Wegner Corinna, Zarandy Zita I, Feiler Nico, Gigou Lea, Halenke Timo, Leopold-Kerschbaumer Niklas, Krusche Maik, Skibicka Weronika, Kepesidis Kosmas V
Chair of Experimental Physics-Laser Physics, Ludwig-Maximilians-Universität München (LMU), Garching, Germany.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics (MPQ), Garching, Germany.
J Biophotonics. 2025 Aug;18(8):e70011. doi: 10.1002/jbio.70011. Epub 2025 Mar 24.
This study explores using unsupervised deep learning to find a low-dimensional representation of infrared molecular fingerprints of human blood. We developed a fully convolutional denoising autoencoder to process Fourier transform infrared (FTIR) spectroscopy data, aiming to condense the spectra into a set of latent variables. By utilizing the autoencoder's bottleneck architecture and a custom loss function, we effectively reduced noise while retaining essential molecular information. This method improved lung cancer detection accuracy by 2.6 percentage points in a case-control study. The resulting latent space not only compacts spectral data, but also highlights variables linked to disease presence, offering potential for improving diagnostics. Trial Registration: German Clinical Trials Register (DRKS): DRKS00013217.
本研究探索使用无监督深度学习来寻找人类血液红外分子指纹的低维表示。我们开发了一种全卷积去噪自动编码器来处理傅里叶变换红外(FTIR)光谱数据,旨在将光谱压缩成一组潜在变量。通过利用自动编码器的瓶颈架构和自定义损失函数,我们在保留基本分子信息的同时有效降低了噪声。在一项病例对照研究中,该方法将肺癌检测准确率提高了2.6个百分点。所得的潜在空间不仅压缩了光谱数据,还突出了与疾病存在相关的变量,为改进诊断提供了潜力。试验注册:德国临床试验注册中心(DRKS):DRKS00013217。