文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mannosamine-Engineered Nanoparticles for Precision Rifapentine Delivery to Macrophages: Advancing Targeted Therapy Against Mycobacterium Tuberculosis.

作者信息

Luan Haopeng, Peng Cong, Yasin Parhat, Shang Qisong, Xiang Wei, Song Xinghua

机构信息

Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People's Republic of China.

出版信息

Drug Des Devel Ther. 2025 Mar 19;19:2081-2102. doi: 10.2147/DDDT.S505682. eCollection 2025.


DOI:10.2147/DDDT.S505682
PMID:40129488
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11931292/
Abstract

BACKGROUND: Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death among infectious diseases. Enhancing the ability of anti-tuberculosis drugs to eradicate Mycobacterium tuberculosis within host cells remains a significant challenge. METHODS: A mannosamine-modified nanoparticle delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) copolymers to enhance the targeted delivery of rifapentine (RPT) to macrophages. D-mannosamine was conjugated to PLGA-polyethylene glycol (PLGA-PEG) copolymers through EDC/NHS coupling chemistry, and the resultant RPT-MAN-PLGA-PEG nanoparticles (NPs) were prepared through a combination of phacoemulsification and solvent evaporation methods. The physicochemical properties, toxicity, in vitro drug release profiles, stability, cellular uptake, and anti-TB efficacy of the NPs were systematically evaluated. RESULTS: The RPT-MAN-PLGA-PEG NPs had a mean particle size of 108.2 ± 7.2 nm, with encapsulation efficiency and drug loading rates of 81.2 ± 6.3% and 13.7 ± 0.7%, respectively. RPT release from the NPs was sustained for over 60 hours. Notably, the phagocytic uptake of the MAN-PLGA NPs by macrophages was significantly higher compared to PLGA-PEG NPs. Both NPs improved pharmacokinetic parameters without inducing significant organ toxicity. The minimum inhibitory concentration for the NPs was 0.047 μg/mL, compared to 0.2 μg/mL for free RPT. CONCLUSION: The engineered RPT-MAN-PLGA-PEG NPs effectively enhanced macrophage uptake in vitro and facilitated the intracellular clearance of Mtb. This nanoparticle-based delivery system offers a promising approach for improving the precision of anti-TB therapy, extending drug release, optimizing pharmacokinetic profiles, augmenting antimicrobial efficacy, and mitigating drug-related toxicities.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/a7e15ece3bec/DDDT-19-2081-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/1be4d03fefe1/DDDT-19-2081-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/5db73f6fdadc/DDDT-19-2081-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/0b29946dc0e2/DDDT-19-2081-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/94a7be2151e3/DDDT-19-2081-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/af55ae52fd22/DDDT-19-2081-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/2ca5e5bc34ae/DDDT-19-2081-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/d262434164b1/DDDT-19-2081-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/a7e15ece3bec/DDDT-19-2081-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/1be4d03fefe1/DDDT-19-2081-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/5db73f6fdadc/DDDT-19-2081-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/0b29946dc0e2/DDDT-19-2081-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/94a7be2151e3/DDDT-19-2081-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/af55ae52fd22/DDDT-19-2081-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/2ca5e5bc34ae/DDDT-19-2081-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/d262434164b1/DDDT-19-2081-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64e8/11931292/a7e15ece3bec/DDDT-19-2081-g0008.jpg

相似文献

[1]
Mannosamine-Engineered Nanoparticles for Precision Rifapentine Delivery to Macrophages: Advancing Targeted Therapy Against Mycobacterium Tuberculosis.

Drug Des Devel Ther. 2025-3-19

[2]
Development of Rifapentine-Loaded PLGA-Based Nanoparticles: In vitro Characterisation and in vivo Study in Mice.

Int J Nanomedicine. 2020-10-6

[3]
Mannosamine-Modified Poly(lactic--glycolic acid)-Polyethylene Glycol Nanoparticles for the Targeted Delivery of Rifapentine and Isoniazid in Tuberculosis Therapy.

Bioconjug Chem. 2025-5-21

[4]
Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against H37Rv strain.

Int J Nanomedicine. 2018-7-23

[5]
HPMA-PLGA Based Nanoparticles for Effective In Vitro Delivery of Rifampicin.

Pharm Res. 2018-12-3

[6]
Matryoshka-type gastro-resistant microparticles for the oral treatment of Mycobacterium tuberculosis.

Nanomedicine (Lond). 2019-2-8

[7]
Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.

Drug Des Devel Ther. 2015-5-22

[8]
Single-dose Ag85B-ESAT6-loaded poly(lactic--glycolic acid) nanoparticles confer protective immunity against tuberculosis.

Int J Nanomedicine. 2019-5-1

[9]
Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages.

Pharm Res. 2018-3-29

[10]
Poly(lactic--glycolic) Acid-Lipid Hybrid Microparticles Enhance the Intracellular Uptake and Antibacterial Activity of Rifampicin.

ACS Appl Mater Interfaces. 2020-2-11

本文引用的文献

[1]
Programmable Macrophage Vesicle Based Bionic Self-Adjuvanting Vaccine for Immunization against Monkeypox Virus.

Adv Sci (Weinh). 2025-1

[2]
Mannose-Functionalized Chitosan-Coated PLGA Nanoparticles for Brain-Targeted Codelivery of CBD and BDNF for the Treatment of Alzheimer's Disease.

ACS Chem Neurosci. 2024-11-6

[3]
Macrophage targeted graphene oxide nanosystem synergize antibiotic killing and host immune defense for Tuberculosis Therapy.

Pharmacol Res. 2024-10

[4]
Amino acid-crosslinked 4arm-PLGA Janus patch with anti-adhesive and anti-bacterial properties for hernia repair.

Colloids Surf B Biointerfaces. 2024-11

[5]
NIR-II AIE Luminogen-Based Erythrocyte-Like Nanoparticles with Granuloma-Targeting and Self-Oxygenation Characteristics for Combined Phototherapy of Tuberculosis.

Adv Mater. 2024-9

[6]
Tumor Cell-Targeting and Tumor Microenvironment-Responsive Nanoplatforms for the Multimodal Imaging-Guided Photodynamic/Photothermal/Chemodynamic Treatment of Cervical Cancer.

Int J Nanomedicine. 2024

[7]
Mannose Ligands for Mannose Receptor Targeting.

Int J Mol Sci. 2024-1-23

[8]
Immune cell receptor-specific nanoparticles as a potent adjuvant for nasal split influenza vaccine delivery.

Nanotechnology. 2024-1-4

[9]
Macrophage targeted iron oxide nanodecoys augment innate immunological and drug killings for more effective Mycobacterium Tuberculosis clearance.

J Nanobiotechnology. 2023-10-10

[10]
Mycobacterium tuberculosis and its clever approaches to escape the deadly macrophage.

World J Microbiol Biotechnol. 2023-9-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索