Sixto-López Yudibeth, Mendoza-Figueroa Humberto L, Landeros-Rivera Bruno, Camacho-Molina Alejandra, Correa-Basurto José
Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja s/n, 18071, Granada, Spain.
Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Instituto Politécnico Nacional, Ciudad de México, 11340, México.
Sci Rep. 2025 Mar 25;15(1):10229. doi: 10.1038/s41598-025-93966-7.
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive lipid disorder caused by a deficiency in CYP27A1, the first enzyme in the bile acid biosynthesis pathway. CYP27A1 catalyzes the 7α-hydroxylation of cholesterol, playing an important role in cholesterol homeostasis. CTX leads to progressive neurological dysfunction, including cognitive impairment, epilepsy, peripheral neuropathy, and movement disorders. Missense mutations in CYP27A1 disrupt its activity, particularly at the heme binding region and the adrenodoxin-binding site. This study examined the structural effects of seven-point mutations in CYP27A1 using molecular dynamic (MD) simulations. Both mutant and wild-type (WT) proteins were modeled to observe their structural behavior. Additionally, by combining MD simulations, docking, and quantum calculations cholesterol binding was studied in WT and mutant proteins. Results indicated that mutations altered cholesterol binding mode, preventing it from adopting the correct position in the catalytic site. The substrate access channel in mutants became wider, shallower, or closed. The interaction between the isopropyl group of cholesterol and the heme was found to be crucial for the hydroxylation capacity of CYP27A1, as this interaction was only present in the cholesterol-WT complex.
脑腱黄瘤病(CTX)是一种常染色体隐性脂质紊乱疾病,由胆汁酸生物合成途径中的首个酶 CYP27A1 缺乏所致。CYP27A1 催化胆固醇的 7α-羟基化,在胆固醇稳态中发挥重要作用。CTX 会导致进行性神经功能障碍,包括认知障碍、癫痫、周围神经病变和运动障碍。CYP27A1 中的错义突变会破坏其活性,尤其是在血红素结合区域和肾上腺皮质铁氧化还原蛋白结合位点。本研究使用分子动力学(MD)模拟检查了 CYP27A1 中七个点突变的结构效应。对突变体和野生型(WT)蛋白均进行建模以观察其结构行为。此外,通过结合 MD 模拟、对接和量子计算,研究了 WT 和突变体蛋白中的胆固醇结合情况。结果表明,突变改变了胆固醇的结合模式,使其无法在催化位点采取正确位置。突变体中的底物进入通道变宽、变浅或关闭。发现胆固醇的异丙基与血红素之间的相互作用对 CYP27A1 的羟基化能力至关重要,因为这种相互作用仅存在于胆固醇-WT 复合物中。