Santuz Hubert, Laurent Benoist, Robert Charles H, Prévost Chantal
CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France.
CNRS and Université Paris-Cité, Laboratoire de Biochimie Théorique (UPR9080), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France.
J Mol Biol. 2025 Aug 1;437(15):169019. doi: 10.1016/j.jmb.2025.169019. Epub 2025 Feb 19.
At the subcellular level, macromolecules self-assemble to form molecular machinery in which the assembly modes play critical roles: the structural integrity of cell walls that allows mechanical growth, the maintenance and repair of the genetic material, membrane flow control, protein chaperoning, and ATP production, to cite just a few examples. As molecular modeling expands its scope to such systems, structural biologists are faced with the difficulty of understanding the structure and dynamics of these supramolecular assemblies. We present Heligeom, a webserver that offers a simple and efficient means for analyzing and constructing oligomeric assemblies based on user-provided structures of two interacting units. The input 3D coordinates may result from structure determination, simulations, docking trials, or deep-learning tools such as AlphaFold. For a given interface, Heligeom outputs the mathematical helical parameters of the corresponding oligomeric form, including axis, pitch, handedness, number of monomers per turn, etc. The server also allows leveraging these parameters to construct oligomers of specified size, visualizing them interactively, and downloading them as PDB files. For subunits (protomers) having multiple interaction geometries, the different interfaces and their global assembly geometry can be visualized and compared. Heligeom thus allows explicitly linking protomer-protomer interfaces to the oligomeric architecture, illuminating possible sources of plasticity in protein filaments such as mutations or thermal, mechanical, or chemical perturbations. Heligeom thus constitutes an intuitive tool to accompany integrative modeling of oligomeric filamentous assemblies. Examples of its application at different structural levels are presented. Heligeom webserver can be accessed at https://heligeom.galaxy.ibpc.fr.
在亚细胞水平上,大分子会自我组装形成分子机器,其中组装模式起着关键作用:例如允许机械生长的细胞壁结构完整性、遗传物质的维护和修复、膜流量控制、蛋白质伴侣作用以及ATP生成等。随着分子建模将其范围扩展到此类系统,结构生物学家面临着理解这些超分子组装体的结构和动力学的困难。我们展示了Heligeom,这是一个网络服务器,它提供了一种基于用户提供的两个相互作用单元的结构来分析和构建寡聚体组装体的简单有效方法。输入的3D坐标可能来自结构测定、模拟、对接试验或深度学习工具(如AlphaFold)。对于给定的界面,Heligeom会输出相应寡聚体形式的数学螺旋参数,包括轴、螺距、手性、每圈单体数量等。该服务器还允许利用这些参数构建指定大小的寡聚体,以交互方式可视化它们,并将它们作为PDB文件下载。对于具有多种相互作用几何形状的亚基(原体),可以可视化并比较不同的界面及其全局组装几何形状。因此,Heligeom允许将原体 - 原体界面明确地与寡聚体结构联系起来,阐明蛋白质细丝中可塑性的可能来源,如突变或热、机械或化学扰动。因此,Heligeom构成了一个直观的工具,可用于辅助寡聚丝状组装体的综合建模。文中展示了其在不同结构水平上的应用示例。可通过https://heligeom.galaxy.ibpc.fr访问Heligeom网络服务器。