Suppr超能文献

使用机器学习进行麻醉后护理单元(PACU)准备情况预测:算法的比较研究

Post-Anesthesia Care Unit (PACU) readiness predictions using machine learning: a comparative study of algorithms.

作者信息

Maroufi Shahnam Sedigh, Movahed Maryam Soleimani, Ejmalian Azar, Sarkhosh Maryam, Behmanesh Ali

机构信息

Department of Anesthesia, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.

Education Development Center, Iran University of Medical Sciences, Tehran, Iran.

出版信息

BMC Med Inform Decis Mak. 2025 Mar 25;25(1):146. doi: 10.1186/s12911-025-02982-0.

Abstract

INTRODUCTION

Accurate and timely discharge from the Post-Anesthesia Care Unit (PACU) is essential to prevent postoperative complications and optimize hospital resource utilization. Premature discharge can lead to severe issues such as respiratory or cardiovascular complications, while delays can strain hospital capacity. Machine learning algorithms offer a promising solution by leveraging large amounts of patient data to predict optimal discharge times. Unlike prior studies relying on statistical models or single-algorithm methods, this research assesses multiple ML models to predict discharge readiness, comparing them against staff evaluations and the Aldrete checklist.

METHODOLOGY

We conducted a cross-sectional study of 830 patients under general anesthesia from December 2023 to April 2024, collecting demographics, surgical details, and Aldrete scores. A power analysis ensured statistical robustness, targeting a 5% accuracy improvement (minimum clinically important difference, derived from Gabriel et al., 2017), with variance (SD ≈ 0.1) from pilot data, using a two-sample t-test (power = 0.8, alpha = 0.05), confirming the sample size's adequacy. Two prediction approaches were tested: discharge timing in 15-minute intervals and binary classification (within 15 min or later). Models included Random Forest (RF), Support Vector Machines (SVM), Logistic Regression (LR), Decision Tree (DT), K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), and XGBoost, assessed via accuracy, precision, recall, F1 score, and AUC. Predictions were benchmarked against staff and Aldrete scores, with 99.5% confidence intervals (CIs) adjusting for multiple comparisons.

RESULTS

he RF algorithm showed high performance in both prediction approaches. In the first approach, RF achieved an AUC of 0.75 (99.5% CI: 0.70-0.80) and accuracy of 0.87 (99.5% CI: 0.83-0.91) per staff evaluations, and an AUC of 0.87 (99.5% CI: 0.83-0.91) and accuracy of 0.71 (99.5% CI: 0.66-0.76) per Aldrete scores. In the second approach, RF recorded an AUC of 0.85 (99.5% CI: 0.81-0.89) and accuracy of 0.86 (99.5% CI: 0.82-0.90) per staff evaluations, with ANN also showing strong results (AUC = 0.88, 99.5% CI: 0.84-0.92; accuracy = 0.78, 99.5% CI: 0.74-0.82). Due to overlapping CIs, differences between models were not statistically significant (P >.005). According to the Aldrete checklist, RF, SVM, and ANN exhibited competitive predictive capability, with AUCs ranging from 0.80 to 0.86.

CONCLUSION

The strong performance of Random Forest (RF) and Artificial Neural Network (ANN) models in predicting PACU discharge timing upon admission highlights their potential as effective tools for evaluating discharge readiness, as compared to staff assessments and the Aldrete checklist. This study focused on assessing these models, showing their ability to produce consistent predictions, though differences between top models were not statistically significant due to overlapping confidence intervals. Practical application of these findings to improve patient outcomes or hospital efficiency requires further investigation.

摘要

引言

准确及时地从麻醉后护理单元(PACU)转出对于预防术后并发症和优化医院资源利用至关重要。过早转出可能导致严重问题,如呼吸或心血管并发症,而延迟转出则会给医院容量带来压力。机器学习算法通过利用大量患者数据来预测最佳转出时间,提供了一个有前景的解决方案。与以往依赖统计模型或单一算法方法的研究不同,本研究评估了多个机器学习模型来预测转出准备情况,并将它们与工作人员评估和Aldrete检查表进行比较。

方法

我们对2023年12月至2024年4月期间接受全身麻醉的830例患者进行了横断面研究,收集了人口统计学、手术细节和Aldrete评分。通过功效分析确保统计稳健性,目标是提高5%的准确性(最小临床重要差异,源自Gabriel等人,2017年),根据试点数据的方差(标准差≈0.1),使用双样本t检验(功效=0.8,α=0.05),确认样本量足够。测试了两种预测方法:以15分钟为间隔的转出时间和二元分类(15分钟内或之后)。模型包括随机森林(RF)、支持向量机(SVM)、逻辑回归(LR)、决策树(DT)、K近邻(KNN)、人工神经网络(ANN)和XGBoost,通过准确性、精确率、召回率、F1分数和AUC进行评估。预测结果以工作人员和Aldrete评分为基准,并对多重比较进行99.5%置信区间(CIs)调整。

结果

随机森林(RF)算法在两种预测方法中均表现出高性能。在第一种方法中,根据工作人员评估,RF的AUC为0.75(99.5% CI:0.70 - 0.80),准确性为0.87(99.5% CI:0.83 - 0.91);根据Aldrete评分,AUC为0.87(99.5% CI:0.83 - 0.91),准确性为0.71(99.5% CI:0.66 - 0.76)。在第二种方法中,根据工作人员评估,RF的AUC为0.85(99.5% CI:0.81 - 0.89),准确性为0.86(99.5% CI:0.82 - 0.90),人工神经网络(ANN)也表现出强劲结果(AUC = 0.88,99.5% CI:0.84 - 0.92;准确性 = 0.78,99.5% CI:0.74 - 0.82)。由于置信区间重叠,模型之间的差异无统计学意义(P >.005)。根据Aldrete检查表,RF、SVM和ANN表现出具有竞争力的预测能力,AUC范围为0.80至0.86。

结论

随机森林(RF)和人工神经网络(ANN)模型在预测入院时PACU转出时间方面的强劲表现,凸显了它们作为评估转出准备情况的有效工具的潜力,与工作人员评估和Aldrete检查表相比。本研究重点评估了这些模型,显示了它们产生一致预测的能力,尽管由于置信区间重叠,顶级模型之间的差异无统计学意义。将这些发现实际应用于改善患者结局或医院效率需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97de/11934757/4fde8101d17f/12911_2025_2982_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验