Xie Gang, Xue Qifan, Ding Haojia, Liang Aihui, Liu Jiaxin, Yang Yonglong, Wang Jing, Liao Xunfan, Min Yonggang, Chen Yiwang
College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
Angew Chem Int Ed Engl. 2025 May 26;64(22):e202504144. doi: 10.1002/anie.202504144. Epub 2025 Apr 2.
Organic semiconductors with intramolecular noncovalent interactions are promising hole transport materials (HTMs) for efficient and stable perovskite solar cells (PSCs), but the effects of different types of noncovalent bonds on the properties of HTMs are rarely reported. Here, three thiazolo[5,4-d]thiazole (TzTz)-based HTMs with different side chains were developed. Compared with alkyl side chains, functional side chains can improve the crystallinity and charge transport ability of HTMs by forming intramolecular noncovalent interactions. However, the steric hindrance of S···O in TzTzTPA-SO distorted the molecular skeleton, leading to edge-on stacking and local aggregation of film. Fortunately, TzTzTPA-NH with intramolecular hydrogen bond showed high planarity, proper crystallinity, and preferred stacking orientation. Consequently, a remarkable power conversion efficiency (PCE) of 24.2% with a nice long-term stability was achieved by dopant-free TzTzTPA-NH-based PSCs, which is superior to the doped Spiro-OMeTAD-based PSCs. In addition, TzTzTPA-NH is well used as HTM in wide-bandgap PSCs and perovskite/organic tandem solar cells (TSCs). Encouragingly, the TSCs based on TzTzTPA-NH achieved an excellent PCE of 25.4%, which is the highest PCE of n-i-p perovskite/organic TSCs. This work clearly illustrates the effect of intramolecular noncovalent interactions on the properties of HTMs, and provides guidance for designing high-performance dopant-free HTMs in PSCs.
具有分子内非共价相互作用的有机半导体是用于高效稳定钙钛矿太阳能电池(PSC)的有前途的空穴传输材料(HTM),但不同类型的非共价键对HTM性能的影响鲜有报道。在此,开发了三种具有不同侧链的基于噻唑并[5,4-d]噻唑(TzTz)的HTM。与烷基侧链相比,功能性侧链可通过形成分子内非共价相互作用来提高HTM的结晶度和电荷传输能力。然而,TzTzTPA-SO中S···O的空间位阻使分子骨架发生扭曲,导致薄膜的边缘堆积和局部聚集。幸运的是,具有分子内氢键的TzTzTPA-NH表现出高平面性、适当的结晶度和优选的堆积取向。因此,基于无掺杂TzTzTPA-NH的PSC实现了24.2%的显著功率转换效率(PCE)以及良好的长期稳定性,优于掺杂的基于Spiro-OMeTAD的PSC。此外,TzTzTPA-NH在宽带隙PSC和钙钛矿/有机串联太阳能电池(TSC)中作为HTM得到了很好的应用。令人鼓舞的是,基于TzTzTPA-NH的TSC实现了25.4%的优异PCE,这是n-i-p钙钛矿/有机TSC的最高PCE。这项工作清楚地说明了分子内非共价相互作用对HTM性能的影响,并为设计PSC中高性能的无掺杂HTM提供了指导。