Zhang He, Long Juan, Wang Chenzi, Liu Xiaohan, Lu He, Xu Wenbei, Sun Xiaonan, Dou Peipei, Zhou Dexing, Zhu Lili, Xu Kai, Meng Yankai
Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
College of Medical Imaging, Xuzhou Medical University, Xuzhou, China.
Front Neurol. 2025 Mar 11;16:1566395. doi: 10.3389/fneur.2025.1566395. eCollection 2025.
To evaluate the predictive value of dual-energy CT angiography (DECTA) parameters of carotid intraplaque and perivascular adipose tissue (PVAT) in acute stroke events.
A retrospective analysis was conducted using clinical, laboratory, and imaging data from patients who underwent dual-energy carotid CTA and cranial MRI. Acute cerebral infarctions occurring in the ipsilateral anterior circulation were classified as the symptomatic group (STA group), while other cases were categorized as the asymptomatic group (ATA group). LASSO regression was employed to identify key predictors. These predictors were used to develop three models: the intraplaque model (IP_Model), the perivascular adipose tissue model (PA_Model), and the nomogram model (Nomo_Model). The predictive accuracy of the models was evaluated using receiver operating characteristic (ROC) analysis, calibration curves, and decision curve analysis. Statistical significance was defined as < 0.05.
Seventy-five patients (mean age: 68.7 ± 8.7 years) were analyzed. LASSO regression identified seven significant variables (IP_Zeff, IP_40KH, IP_K, PA_FF, PA_VNC, PA_Rho, PA_K) for model construction. The Nomo_Model demonstrated superior predictive performance compared to the IP_Model and PA_Model, achieving an area under the curve (AUC) of 0.962, with a sensitivity of 95.8%, specificity of 82.4%, precision of 82.6%, an F1 score of 0.809, and an accuracy of 88.0%. The clinical decision curve analysis further validated the Nomo_Model's significant clinical utility.
DECTA imaging parameters revealed significant differences in carotid intraplaque and PVAT characteristics between the STA and ATA groups. Integrating these parameters into the nomogram (Nomo_Model) resulted in a highly accurate and clinically relevant tool for predicting acute stroke risk.
评估颈动脉斑块内及血管周围脂肪组织(PVAT)的双能CT血管造影(DECTA)参数对急性卒中事件的预测价值。
对接受双能颈动脉CTA和头颅MRI检查的患者的临床、实验室和影像数据进行回顾性分析。同侧前循环发生的急性脑梗死被分类为症状组(STA组),其他病例被分类为无症状组(ATA组)。采用LASSO回归识别关键预测因素。这些预测因素被用于建立三个模型:斑块内模型(IP_Model)、血管周围脂肪组织模型(PA_Model)和列线图模型(Nomo_Model)。使用受试者工作特征(ROC)分析、校准曲线和决策曲线分析评估模型的预测准确性。统计学显著性定义为P<0.05。
分析了75例患者(平均年龄:68.7±8.7岁)。LASSO回归确定了7个用于模型构建的显著变量(IP_Zeff、IP_40KH、IP_K、PA_FF、PA_VNC、PA_Rho、PA_K)。与IP_Model和PA_Model相比,Nomo_Model表现出更好的预测性能,曲线下面积(AUC)为0.962,灵敏度为95.8%,特异度为82.4%,精确度为82.6%,F1分数为0.809,准确率为88.0%。临床决策曲线分析进一步验证了Nomo_Model的显著临床实用性。
DECTA成像参数显示STA组和ATA组在颈动脉斑块内及PVAT特征方面存在显著差异。将这些参数整合到列线图(Nomo_Model)中产生了一个用于预测急性卒中风险的高度准确且与临床相关的工具。