Suppr超能文献

深度欺骗网络:一种保护无人机免受GPS欺骗攻击的框架。

DeepSpoofNet: a framework for securing UAVs against GPS spoofing attacks.

作者信息

Badar Aziz Ur Rehman, Mahmood Danish, Iqbal Adeel, Kim Sung Won, Akleylek Sedat, Cengiz Korhan, Nauman Ali

机构信息

Computer Science, SZABIST, Islamabad, Pakistan.

School of Computer Science and Engineering, Yeungnam University, Gyeongsan-si, Republic of Korea.

出版信息

PeerJ Comput Sci. 2025 Mar 10;11:e2714. doi: 10.7717/peerj-cs.2714. eCollection 2025.

Abstract

Uncrewed Aerial Vehicles (UAVs) are frequently utilized in several domains such as transportation, distribution, monitoring, and aviation. A significant security vulnerability is the Global Positioning System (GPS) Spoofing attack, wherein the assailant deceives the GPS receiver by transmitting counterfeit signals, thereby gaining control of the UAV. This can result in the UAV being captured or, in certain instances, destroyed. Numerous strategies have been presented to identify counterfeit GPS signals. Although there have been notable advancements in machine learning (ML) for detecting GPS spoofing attacks, there are still challenges and limitations in the current state-of-the-art research. These include imbalanced datasets, sub-optimal feature selection, and the accuracy of attack detection in resource-constrained environments. The proposed framework investigates the optimal pairing of feature selection (FS) methodologies and deep learning techniques for detecting GPS spoofing attacks on UAVs. The primary objective of this study is to address the challenges associated with detecting GPS spoofing attempts in UAVs. The study focuses on tackling the issue of imbalanced datasets by implementing rigorous oversampling techniques. To do this, a comprehensive approach is proposed that combines advanced feature selection techniques with powerful neural network (NN) architectures. The selected attributes from this process are then transmitted to the succeeding tiers of a hybrid NN, which integrates convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM) components. The Analysis of Variance (ANOVA) + CNN-BiLSTM hybrid model demonstrates superior performance, producing exceptional results with a precision of 98.84%, accuracy of 99.25%, F1 score of 99.26%, and recall of 99.69%. The proposed hybrid model for detecting GPS spoofing attacks exhibits significant improvements in terms of prediction accuracy, true positive and false positive rates, as well as F1 score and recall values.

摘要

无人驾驶飞行器(UAV)经常应用于运输、配送、监测和航空等多个领域。一个重大的安全漏洞是全球定位系统(GPS)欺骗攻击,攻击者通过发送伪造信号来欺骗GPS接收器,从而控制无人机。这可能导致无人机被捕获,在某些情况下甚至被摧毁。已经提出了许多策略来识别伪造的GPS信号。尽管在机器学习(ML)检测GPS欺骗攻击方面取得了显著进展,但当前的前沿研究仍存在挑战和局限性。这些包括数据集不平衡、次优特征选择以及资源受限环境下攻击检测的准确性。所提出的框架研究了用于检测无人机GPS欺骗攻击的特征选择(FS)方法和深度学习技术的最佳配对。本研究的主要目标是解决与检测无人机GPS欺骗企图相关的挑战。该研究专注于通过实施严格的过采样技术来解决数据集不平衡的问题。为此,提出了一种综合方法,将先进的特征选择技术与强大的神经网络(NN)架构相结合。从这个过程中选择的属性随后被传输到混合NN的后续层,该混合NN集成了卷积神经网络(CNN)和双向长短期记忆(BiLSTM)组件。方差分析(ANOVA)+ CNN - BiLSTM混合模型表现出卓越的性能,在精度为98.84%、准确率为99.25%、F1分数为99.26%和召回率为99.69%的情况下产生了出色的结果。所提出的用于检测GPS欺骗攻击的混合模型在预测准确性、真阳性和假阳性率以及F1分数和召回值方面有显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73cd/11935755/306fa37da631/peerj-cs-11-2714-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验