Suppr超能文献

利用混合递归特征消除(RFE)技术的集成机器学习模型,用于检测针对无人机的GPS欺骗攻击。

Ensemble Machine Learning Models Utilizing a Hybrid Recursive Feature Elimination (RFE) Technique for Detecting GPS Spoofing Attacks Against Unmanned Aerial Vehicles.

作者信息

Al-Syouf Raghad, Aljarrah Omar Y, Bani-Hani Raed, Alma'aitah Abdallah

机构信息

Department of Network Engineering and Security, Jordan University of Science and Technology, Irbid 22110, Jordan.

School of Computing, Queen's University, Kingston, ON K7L 3N6, Canada.

出版信息

Sensors (Basel). 2025 Apr 9;25(8):2388. doi: 10.3390/s25082388.

Abstract

The dependency of Unmanned Aerial Vehicles (UAVs), also known as drones, on off-board data, such as control and position data, makes them highly susceptible to serious safety and security threats, including data interceptions, Global Positioning System (GPS) jamming, and spoofing attacks. This indeed necessitates the existence of an Intrusion Detection System (IDS) in place to detect potential security threats/intrusions promptly. Recently, machine-learning-based IDSs have gained popularity due to their high performance in detecting known as well as novel cyber-attacks. However, the time and computation efficiencies of ML-based IDSs still present a challenge in the UAV domain. Therefore, this paper proposes a hybrid Recursive Feature Elimination (RFE) technique based on feature importance ranking along with a Spearman Correlation Analysis (SCA). This technique is built on ensemble learning approaches, namely, bagging, boosting, stacking, and voting classifiers, to efficiently detect GPS spoofing attacks. Two benchmark datasets are employed: the GPS spoofing dataset and the UAV location GPS spoofing dataset. The results show that our proposed ensemble models achieved a notable balance between efficacy and efficiency, showing that the bagging classifier achieved the highest accuracy rate of 99.50%. At the same time, the Decision Tree (DT) and the bagging classifiers achieved the lowest processing time of 0.003 s and 0.029 s, respectively, using the GPS spoofing dataset. For the UAV location GPS spoofing dataset, the bagging classifier emerged as the top performer, achieving 99.16% accuracy and 0.002 s processing time compared to other well-known ML models. In addition, the experimental results show that our proposed methodology (RFE) outperformed other well-known ML models built on conventional feature selection techniques for detecting GPS spoofing attacks, such as mutual information gain, correlation matrices, and the chi-square test.

摘要

无人驾驶飞行器(UAV),也被称为无人机,对诸如控制和位置数据等外部数据具有依赖性,这使得它们极易受到包括数据拦截、全球定位系统(GPS)干扰和欺骗攻击在内的严重安全威胁。这确实需要有一个入侵检测系统(IDS)来及时检测潜在的安全威胁/入侵行为。近年来,基于机器学习的入侵检测系统因其在检测已知和新型网络攻击方面的高性能而受到欢迎。然而,基于机器学习的入侵检测系统的时间和计算效率在无人机领域仍然是一个挑战。因此,本文提出了一种基于特征重要性排序和斯皮尔曼相关性分析(SCA)的混合递归特征消除(RFE)技术。该技术基于集成学习方法构建,即装袋法、提升法、堆叠法和投票分类器,以有效检测GPS欺骗攻击。使用了两个基准数据集:GPS欺骗数据集和无人机位置GPS欺骗数据集。结果表明,我们提出的集成模型在有效性和效率之间实现了显著平衡,表明装袋分类器达到了99.50%的最高准确率。同时,使用GPS欺骗数据集时,决策树(DT)和装袋分类器分别达到了0.003秒和0.029秒的最短处理时间。对于无人机位置GPS欺骗数据集,与其他知名机器学习模型相比,装袋分类器表现最佳,准确率达到99.16%,处理时间为0.002秒。此外,实验结果表明,我们提出的方法(RFE)在检测GPS欺骗攻击方面优于基于传统特征选择技术构建的其他知名机器学习模型,如互信息增益、相关矩阵和卡方检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/98e2/12031457/9f4fbe941626/sensors-25-02388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验