Lee Jong Eun, Kim Na Young, Kim Yun-Hyeon, Kwon Yonghan, Kim Sihwan, Han Kyunghwa, Suh Young Joo
Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul, Korea.
Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
AJR Am J Roentgenol. 2025 Jun;224(6):e2532697. doi: 10.2214/AJR.25.32697. Epub 2025 Mar 26.
The importance of including the thoracic aortic calcification (TAC), in addition to coronary artery calcification (CAC), in prognostic assessments has been difficult to determine, partly due to greater challenge in performing standardized TAC assessments. The purpose of this study was to evaluate long-term prognostic implications of TAC assessed using artificial intelligence (AI)-based quantification on routine chest CT in a screening population. This retrospective study included 7404 asymptomatic individuals (median age, 53.9 years; 5875 men, 1529 women) who underwent nongated noncontrast chest CT as part of a national general health screening program at one of two centers from January 2007 to December 2014. A commercial AI program quantified TAC and CAC using Agatston scores, which were stratified into categories. Radiologists manually quantified TAC and CAC in 2567 examinations. The role of AI-based TAC categories in predicting major adverse cardiovascular events (MACE) and all-cause mortality (ACM), independent of AI-based CAC categories as well as clinical and laboratory variables, was assessed by multivariable Cox proportional hazards models using data from both centers and concordance statistics from prognostic models developed and tested using center 1 and center 2 data, respectively. AI-based and manual quantification showed excellent agreement for TAC and CAC (concordance correlation coefficient: 0.967 and 0.895, respectively). The median observation periods were 7.5 years for MACE (383 events in 5342 individuals) and 11.0 years for ACM (292 events in 7404 individuals). When adjusted for AI-based CAC categories along with clinical and laboratory variables, the risk for MACE was not independently associated with any AI-based TAC category; risk of ACM was independently associated with AI-based TAC score of 1001-3000 (HR = 2.14, = .02) but not with other AI-based TAC categories. When prognostic models were tested, the addition of AI-based TAC categories did not improve model fit relative to models containing clinical variables, laboratory variables, and AI-based CAC categories for MACE (concordance index [C-index] = 0.760-0.760, = .81) or ACM (C-index = 0.823-0.830, = .32). The addition of TAC to models containing CAC provided limited improvement in risk prediction in an asymptomatic screening population undergoing CT. AI-based quantification provides a standardized approach for better understanding the potential role of TAC as a predictive imaging biomarker.
除冠状动脉钙化(CAC)外,将胸主动脉钙化(TAC)纳入预后评估的重要性一直难以确定,部分原因是进行标准化TAC评估面临更大挑战。本研究的目的是评估在筛查人群中,使用基于人工智能(AI)的定量方法对常规胸部CT上的TAC进行评估的长期预后意义。这项回顾性研究纳入了7404名无症状个体(中位年龄53.9岁;男性5875名,女性1529名),他们在2007年1月至2014年12月期间,作为全国普通健康筛查项目的一部分,在两个中心之一接受了非门控非增强胸部CT检查。一个商业AI程序使用阿加斯顿评分对TAC和CAC进行定量,并将其分层分类。放射科医生在2567次检查中手动对TAC和CAC进行了定量。通过多变量Cox比例风险模型,使用两个中心的数据以及分别使用中心1和中心2的数据开发和测试的预后模型的一致性统计数据,评估基于AI的TAC分类在预测主要不良心血管事件(MACE)和全因死亡率(ACM)中的作用,该作用独立于基于AI的CAC分类以及临床和实验室变量。基于AI的定量和手动定量在TAC和CAC方面显示出极好的一致性(一致性相关系数分别为0.967和0.895)。MACE的中位观察期为7.5年(5342名个体中有383例事件),ACM的中位观察期为11.0年(7404名个体中有292例事件)。当对基于AI的CAC分类以及临床和实验室变量进行调整后,MACE的风险与任何基于AI的TAC分类均无独立关联;ACM的风险与基于AI的TAC评分为1001 - 3000独立相关(HR = 2.14,P = 0.02),但与其他基于AI的TAC分类无关。当对预后模型进行测试时,相对于包含临床变量、实验室变量和基于AI的CAC分类的模型,添加基于AI的TAC分类并未改善MACE(一致性指数[C指数]= 0.760 - 0.760,P = 0.81)或ACM(C指数 = 0.823 - 0.830,P = 0.32)的模型拟合度。在接受CT检查的无症状筛查人群中,将TAC添加到包含CAC的模型中,在风险预测方面的改善有限。基于AI的定量提供了一种标准化方法,有助于更好地理解TAC作为预测性影像生物标志物的潜在作用。