Suppr超能文献

使用人工智能设计的用于氢、氮异核核磁共振光谱的宽带脉冲检测微生物提取物中的N标记代谢物。

Detection of N-labeled metabolites in microbial extracts using AI-designed broadband pulses for H, N heteronuclear NMR spectroscopy.

作者信息

V S Manu, Tonelli Marco, Bell Bailey, Sharma Alok K, Bugni Tim S, Veglia Gianluigi

机构信息

Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.

Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin, 53706, USA.

出版信息

Analyst. 2025 Apr 22;150(9):1856-1861. doi: 10.1039/d5an00074b.

Abstract

Approximately 40% of bacterial and mammalian metabolites contain nitrogen-based chemical moieties such as amides, amines, and imines. The identification and quantification of these groups 2D H,N heteronuclear NMR spectroscopy have broadened the catalog of NMR-detected metabolites. However, these NMR experiments necessitate broadband radiofrequency (RF) pulses for inversion and refocusing operations to encompass the full range of N chemical shifts, a challenge that becomes increasingly apparent at high and ultra-high magnetic fields. Here, we show that a newly AI-designed broadband N universal 180° pulse for both inversion and refocusing incorporated in the 2D H, N heteronuclear single quantum coherence (2D H-N BB-HSQC) experiment significantly enhances spectral sensitivity. We demonstrate the advantage of the new technique by analyzing the crude extract of sp. WMMC264, a microbial strain that produces siderophores for iron absorption from the environment. The implementation of the AI-designed pulse in the 2D H-N BB-HSQC experiment will contribute to advancing the analysis of nitrogen-containing metabolites in biological fluids and cell extracts.

摘要

大约40%的细菌和哺乳动物代谢物含有基于氮的化学基团,如酰胺、胺和亚胺。这些基团的鉴定和定量 二维氢氮异核核磁共振光谱拓宽了核磁共振检测代谢物的目录。然而,这些核磁共振实验需要宽带射频(RF)脉冲进行反转和重聚焦操作,以涵盖氮化学位移的全范围,这一挑战在高磁场和超高磁场下变得越来越明显。在这里,我们表明,一种新的人工智能设计的宽带氮通用180°脉冲用于反转和重聚焦,并结合在二维氢氮异核单量子相干(2D H-N BB-HSQC)实验中,显著提高了光谱灵敏度。我们通过分析sp. WMMC264的粗提物来证明新技术的优势,sp. WMMC264是一种微生物菌株,能产生用于从环境中吸收铁的铁载体。在二维氢氮BB-HSQC实验中实施人工智能设计的脉冲将有助于推进生物流体和细胞提取物中含氮代谢物的分析。

相似文献

3
HSQC/F-PSYCHE TOCSY NOAH Supersequence for High-Resolution NMR Analysis of Urine Metabolites.
Magn Reson Chem. 2025 Oct;63(10):810-823. doi: 10.1002/mrc.70013. Epub 2025 Jul 20.
4
Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation.
Cochrane Database Syst Rev. 2018 Jan 22;1(1):CD011551. doi: 10.1002/14651858.CD011551.pub2.
6
Reducing experimental time through spin-lattice relaxation enhancement via dissolved oxygen.
J Biomol NMR. 2025 Jun;79(2):67-78. doi: 10.1007/s10858-024-00457-4.
7
Quantification of Small Molecule Partitioning in a Biomolecular Condensate with 2D Nuclear Magnetic Resonance Spectroscopy.
Chembiochem. 2025 Sep 15;26(17):e202500401. doi: 10.1002/cbic.202500401. Epub 2025 Jul 24.
8
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.
9
Selective [9-N] Guanosine for Nuclear Magnetic Resonance Studies of Large Ribonucleic Acids.
Chembiochem. 2025 Jun 16;26(12):e202500206. doi: 10.1002/cbic.202500206. Epub 2025 May 23.
10
Probe design for high sensitivity proton-detected solid-state NMR.
J Magn Reson. 2025 Sep;378:107919. doi: 10.1016/j.jmr.2025.107919. Epub 2025 Jun 9.

本文引用的文献

1
Producing recombinant proteins in Vibrio natriegens.
Microb Cell Fact. 2024 Jul 24;23(1):208. doi: 10.1186/s12934-024-02455-5.
3
Application of N-Edited H-C Correlation NMR Spectroscopy─Toward Fragment-Based Metabolite Identification and Screening via HCN Constructs.
Anal Chem. 2023 Aug 15;95(32):11926-11933. doi: 10.1021/acs.analchem.3c01362. Epub 2023 Aug 3.
4
The use of nitrogen-15 in microbial natural product discovery and biosynthetic characterization.
Front Microbiol. 2023 May 10;14:1174591. doi: 10.3389/fmicb.2023.1174591. eCollection 2023.
5
Water irradiation devoid pulses enhance the sensitivity of H,H nuclear Overhauser effects.
J Biomol NMR. 2023 Apr;77(1-2):1-14. doi: 10.1007/s10858-022-00407-y. Epub 2022 Dec 19.
6
High-fidelity control of spin ensemble dynamics via artificial intelligence: from quantum computing to NMR spectroscopy and imaging.
PNAS Nexus. 2022 Aug 5;1(4):pgac133. doi: 10.1093/pnasnexus/pgac133. eCollection 2022 Sep.
7
Design and applications of water irradiation devoid RF pulses for ultra-high field biomolecular NMR spectroscopy.
Phys Chem Chem Phys. 2022 Aug 10;24(31):18477-18481. doi: 10.1039/d2cp01744j.
9
Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives.
Front Mol Biosci. 2021 Sep 20;8:698337. doi: 10.3389/fmolb.2021.698337. eCollection 2021.
10
Chirp pulse sequences for broadband π rotation.
J Magn Reson. 2021 Jul;328:107002. doi: 10.1016/j.jmr.2021.107002. Epub 2021 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验