Suppr超能文献

通过溶解氧实现自旋晶格弛豫增强来缩短实验时间。

Reducing experimental time through spin-lattice relaxation enhancement via dissolved oxygen.

作者信息

Picard Louis-Philippe, Pichugin Dmitry, Huang Shuya Kate, Suleiman Motasem, Prosser R Scott

机构信息

Department of Chemistry, University of Toronto, Toronto, Canada.

Biochemistry Department, University of Toronto, Toronto, Canada.

出版信息

J Biomol NMR. 2025 Jun;79(2):67-78. doi: 10.1007/s10858-024-00457-4.

Abstract

Large proteins and dilute spin systems within a deuterated background are often characterized by long proton (H) spin-lattice relaxation times (T), which directly impacts the recycle delay and hence, the total experimental time. Dioxygen (O) is a well-known paramagnetic species whose short electronic spin-lattice relaxation time (7.5 ps) contributes to effective spin-lattice relaxation of high gamma nuclei. Oxygen's chemical potential and high diffusivity also allows it to access both the protein exterior and much of the (hydrophobic) interior of the protein. Consequently, at O partial pressures of ~ 10 bar, H and F spin-lattice relaxation rates (R) typically reach 3-5 Hz (versus rates of 0.7-1.0 Hz without oxygen) with comparable line-broadening in protein NMR spectra. Using fluoroacetate dehalogenase (FAcD) a soluble 35 kDa homodimeric enzyme, a nanodisc-stabilized G protein-coupled receptor (AR), and bovine serum albumin (BSA) as test cases, a 3-fold savings in time was achieved in acquiring H- N HSQC and F NMR spectra, after oxygenation at 9 bar for 24 h. Additional spin-diffusion effects are anticipated to contribute to uniform H spin-lattice relaxation for both solvent-exposed and buried protons, as demonstrated by T relaxation analysis of amides in N-labeled FAcD. Finally, we show that in protein samples dissolved oxygen pre-equilibrated at 9 bar (pO) is largely retained in solution at 20° C or lower, using a standard NMR tube for a period of 3-4 days, thus avoiding the use of specialized apparatus or high-pressure NMR tubes in the spectrometer. The convenience of being able to add or remove the quenching species, while avoiding any complex apparatus in the NMR experiment, makes this a practical tool for both F, H- C, and H- N NMR studies of proteins.

摘要

在氘化背景下,大蛋白和稀自旋体系通常具有较长的质子(H)自旋晶格弛豫时间(T),这直接影响重复时间,进而影响总实验时间。双氧(O)是一种著名的顺磁物质,其短的电子自旋晶格弛豫时间(7.5皮秒)有助于高γ核的有效自旋晶格弛豫。氧的化学势和高扩散率还使其能够进入蛋白质的外部以及大部分(疏水)内部。因此,在约10巴的氧分压下,H和F自旋晶格弛豫率(R)通常达到3 - 5赫兹(相比无氧时的0.7 - 1.0赫兹),蛋白质核磁共振谱中的线宽相当。以氟乙酸脱卤酶(FAcD)(一种可溶性35千道尔顿的同二聚体酶)、纳米盘稳定的G蛋白偶联受体(AR)和牛血清白蛋白(BSA)作为测试案例,在9巴下充氧24小时后,获取H - N HSQC和F核磁共振谱的时间节省了三分之一。如对N标记的FAcD中的酰胺进行T弛豫分析所示,预计额外的自旋扩散效应将有助于溶剂暴露质子和埋藏质子的均匀H自旋晶格弛豫。最后,我们表明,在20℃或更低温度下,使用标准核磁共振管,在9巴(pO)下预平衡的溶解氧在蛋白质样品中可在溶液中大量保留3 - 4天,从而避免在光谱仪中使用专门的仪器或高压核磁共振管。能够添加或去除淬灭物质,同时在核磁共振实验中避免任何复杂仪器,这种便利性使其成为蛋白质的F、H - C和H - N核磁共振研究的实用工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验