Suppr超能文献

整合浆细胞游离DNA片段末端基序和大小与基因组特征可实现肺癌检测。

Integrating Plasma Cell-Free DNA Fragment End Motif and Size with Genomic Features Enables Lung Cancer Detection.

作者信息

Lee Tae-Rim, Ahn Jin Mo, Lee Junnam, Kim Dasom, Park Juntae, Jeong Byeong-Ho, Oh Dongryul, Kim Sang Man, Jung Gyou-Chul, Choi Beom Hee, Kwon Min-Jung, Wang Mengchi, Salmans Michael, Carson Andrew, Leatham Bryan, Fathe Kristin, Lee Byung In, Jung Byoungsok, Ki Chang-Seok, Park Young Sik, Cho Eun-Hae

机构信息

Genome Research Center, GC Genome, Yongin-si, South Korea.

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.

出版信息

Cancer Res. 2025 May 2;85(9):1696-1707. doi: 10.1158/0008-5472.CAN-24-1517.

Abstract

Early detection of lung cancer is important for improving patient survival rates. Liquid biopsy using whole-genome sequencing of cell-free DNA (cfDNA) offers a promising avenue for lung cancer screening, providing a potential alternative or complementary approach to current screening modalities. Here, we aimed to develop and validate an approach by integrating fragment and genomic features of cfDNA to enhance lung cancer detection accuracy across diverse populations. Deep learning-based classifiers were trained using comprehensive cfDNA fragmentomic features from participants in multi-institutional studies, including a Korean discovery dataset (218 patients with lung cancer and 2,559 controls), a Korean validation dataset (111 patients with lung cancer and 1,136 controls), and an independent Caucasian validation cohort (50 patients with lung cancer and 50 controls). In the discovery dataset, classifiers using fragment end motif by size, a feature that captures both fragment end motif and size profiles, outperformed standalone fragment end motif and fragment size classifiers, achieving an area under the curve (AUC) of 0.917. The ensemble classifier integrating fragment end motif by size and genomic coverage achieved an improved performance, with an AUC of 0.937. This performance extended to the Korean validation dataset and demonstrated ethnic generalizability in the Caucasian validation cohort. Overall, the development of a deep learning-based classifier integrating cfDNA fragmentomic and genomic features in this study highlights the potential for accurate lung cancer detection across diverse populations. Significance: Evaluating fragment-based features and genomic coverage in cell-free DNA offers an accurate lung cancer screening method, promising improvements in early cancer detection and addressing challenges associated with current screening methods.

摘要

早期发现肺癌对于提高患者生存率至关重要。使用游离DNA(cfDNA)全基因组测序的液体活检为肺癌筛查提供了一条有前景的途径,为当前的筛查方式提供了一种潜在的替代或补充方法。在此,我们旨在开发并验证一种通过整合cfDNA的片段和基因组特征来提高不同人群肺癌检测准确性的方法。基于深度学习的分类器使用来自多机构研究参与者的全面cfDNA片段组学特征进行训练,包括一个韩国发现数据集(218例肺癌患者和2559例对照)、一个韩国验证数据集(111例肺癌患者和1136例对照)以及一个独立的白种人验证队列(50例肺癌患者和50例对照)。在发现数据集中,使用按大小分类的片段末端基序的分类器(一种同时捕获片段末端基序和大小分布的特征)优于单独的片段末端基序和片段大小分类器,曲线下面积(AUC)达到0.917。整合按大小分类的片段末端基序和基因组覆盖度的集成分类器性能有所提高,AUC为0.937。这种性能在韩国验证数据集中得到延续,并在白种人验证队列中显示出种族通用性。总体而言,本研究中基于深度学习的整合cfDNA片段组学和基因组特征的分类器的开发突出了在不同人群中准确检测肺癌的潜力。意义:评估游离DNA中基于片段的特征和基因组覆盖度提供了一种准确的肺癌筛查方法,有望改善早期癌症检测并解决与当前筛查方法相关的挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验