Camacho-Cardenosa Marta, Pulido-Escribano Victoria, Estrella-Guisado Guadalupe, Dorado Gabriel, Herrera-Martínez Aura D, Gálvez-Moreno María Ángeles, Casado-Díaz Antonio
Unidad de Gestión Clínica de Endocrinología y Nutrición-GC17, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, 14004 Córdoba, Spain.
Departamento Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain.
Gels. 2025 Mar 8;11(3):191. doi: 10.3390/gels11030191.
Three-dimensional bioprinting is a new advance in tissue engineering and regenerative medicine. Bioprinting allows manufacturing three-dimensional (3D) structures that mimic tissues or organs. The bioinks used are mainly made of natural or synthetic polymers that must be biocompatible, printable, and biodegradable. These bioinks may incorporate progenitor cells, favoring graft implantation and regeneration of injured tissues. However, the natures of biomaterials, bioprinting processes, a lack of vascularization, and immune responses are factors that limit the viability and functionality of implanted cells and the regeneration of damaged tissues. These limitations can be addressed by incorporating extracellular vesicles (EV) into bioinks. Indeed, EV from progenitor cells may have regenerative capacities, being similar to those of their source cells. Therefore, their combinations with biomaterials can be used in cell-free therapies. Likewise, they can complement the manufacture of bioinks by increasing the viability, differentiation, and regenerative ability of incorporated cells. Thus, the main objective of this review is to show how the use of 3D bioprinting technology can be used for the application of EV in regenerative medicine by incorporating these nanovesicles into hydrogels used as bioinks. To this end, the latest advances derived from in vitro and in vivo studies have been described. Together, these studies show the high therapeutic potential of this strategy in regenerative medicine.
三维生物打印是组织工程和再生医学领域的一项新进展。生物打印能够制造出模仿组织或器官的三维(3D)结构。所使用的生物墨水主要由天然或合成聚合物制成,这些聚合物必须具有生物相容性、可打印性和可生物降解性。这些生物墨水可能包含祖细胞,有利于移植植入和受损组织的再生。然而,生物材料的性质、生物打印过程、缺乏血管化以及免疫反应是限制植入细胞的活力和功能以及受损组织再生的因素。通过将细胞外囊泡(EV)纳入生物墨水中可以解决这些限制。事实上,祖细胞来源的EV可能具有再生能力,与其来源细胞的再生能力相似。因此,它们与生物材料的组合可用于无细胞疗法。同样,它们可以通过提高所包含细胞的活力、分化和再生能力来补充生物墨水的制造。因此,本综述的主要目的是展示如何通过将这些纳米囊泡纳入用作生物墨水的水凝胶中,将3D生物打印技术用于EV在再生医学中的应用。为此,已经描述了来自体外和体内研究的最新进展。这些研究共同表明了该策略在再生医学中的高治疗潜力。