Suppr超能文献

草酸消耗量和pH值对产草酸植物病原菌体外生物防治的影响

Impact of Oxalic Acid Consumption and pH on the In Vitro Biological Control of Oxalogenic Phytopathogen .

作者信息

Estoppey Aislinn, Vallat-Michel Armelle, Chain Patrick S, Bindschedler Saskia, Junier Pilar

机构信息

Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.

Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, 2000 Neuchâtel, Switzerland.

出版信息

J Fungi (Basel). 2025 Mar 2;11(3):191. doi: 10.3390/jof11030191.

Abstract

The phytopathogenic fungus has a wide host range and causes significant economic losses in crops worldwide. This pathogen uses oxalic acid as a virulence factor; for this reason, the degradation of this organic acid by oxalotrophic bacteria has been proposed as a biological control approach. However, previous studies on the potential role of oxalotrophy in biocontrol did not investigate the differential effect of oxalic acid consumption and the subsequent pH alkalinisation on fungal growth. In this study, confrontation experiments on different media using a wild-type (WT) strain of and an oxalate-deficient mutant (strain Δ) with the soil oxalotrophic bacteria and showed the combined effect of media composition on oxalic acid production, pH, and fungal growth control. Oxalotrophic bacteria were able to control only in the medium in which oxalic acid was produced. However, the deficient Δ mutant was also controlled, indicating that the consumption of oxalic acid is not the sole mechanism of biocontrol. WT acidified the medium when inoculated alone, while for both fungi, the pH of the medium changed from neutral to alkaline in the presence of bacteria. Therefore, medium alkalinisation independent of oxalotrophy contributes to fungal growth control.

摘要

这种植物病原真菌寄主范围广泛,在全球范围内给农作物造成了巨大的经济损失。该病原菌将草酸用作一种致病因子;因此,草酸营养细菌对这种有机酸的降解已被提议作为一种生物防治方法。然而,先前关于草酸营养在生物防治中潜在作用的研究并未调查草酸消耗以及随后的pH值碱化对真菌生长的不同影响。在本研究中,使用[某种真菌]的野生型(WT)菌株和草酸缺陷型突变体(Δ菌株)与土壤草酸营养细菌[细菌名称1]和[细菌名称2]在不同培养基上进行对峙实验,结果表明培养基成分对草酸产生、pH值和真菌生长控制具有综合影响。草酸营养细菌仅在产生草酸的培养基中能够控制[真菌名称]。然而,缺陷型Δ突变体也受到了控制,这表明草酸的消耗并非生物防治的唯一机制。单独接种时,野生型[真菌名称]会使培养基酸化,而对于两种真菌而言,在有细菌存在的情况下,培养基的pH值从中性变为碱性。因此,与草酸营养无关的培养基碱化有助于控制真菌生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a0/11942934/8bd5971438de/jof-11-00191-g001.jpg

相似文献

2
Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.
World J Microbiol Biotechnol. 2012 Nov;28(11):3197-206. doi: 10.1007/s11274-012-1130-2. Epub 2012 Aug 4.
3
Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
Plant Mol Biol. 2019 Aug;100(6):659-674. doi: 10.1007/s11103-019-00888-w. Epub 2019 Jun 12.
4
Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection.
Plant Physiol. 2004 Nov;136(3):3703-11. doi: 10.1104/pp.104.049650. Epub 2004 Oct 22.
5
Exploring the interaction between endornavirus and : mechanisms of phytopathogenic fungal virulence and antivirus.
mBio. 2025 Mar 12;16(3):e0336524. doi: 10.1128/mbio.03365-24. Epub 2025 Feb 19.
6
Improved methods to assess the effect of bacteria on germination of fungal spores.
FEMS Microbiol Lett. 2022 Apr 21;369(1). doi: 10.1093/femsle/fnac034.
7
Aspergillus spp. eliminate Sclerotinia sclerotiorum by imbalancing the ambient oxalic acid concentration and parasitizing its sclerotia.
Environ Microbiol. 2020 Dec;22(12):5265-5279. doi: 10.1111/1462-2920.15213. Epub 2020 Sep 12.
9
Antifungal Mechanism and Efficacy of Kojic Acid for the Control of in Soybean.
Front Plant Sci. 2022 Mar 11;13:845698. doi: 10.3389/fpls.2022.845698. eCollection 2022.

本文引用的文献

1
Improved methods to assess the effect of bacteria on germination of fungal spores.
FEMS Microbiol Lett. 2022 Apr 21;369(1). doi: 10.1093/femsle/fnac034.
2
Oxalate Carbonate Pathway-Conversion and Fixation of Soil Carbon-A Potential Scenario for Sustainability.
Front Plant Sci. 2020 Dec 21;11:591297. doi: 10.3389/fpls.2020.591297. eCollection 2020.
3
Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi.
mBio. 2020 Jun 16;11(3):e00719-20. doi: 10.1128/mBio.00719-20.
4
Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
Plant Mol Biol. 2019 Aug;100(6):659-674. doi: 10.1007/s11103-019-00888-w. Epub 2019 Jun 12.
5
Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions.
Adv Appl Microbiol. 2019;106:49-77. doi: 10.1016/bs.aambs.2018.10.001. Epub 2018 Nov 27.
6
Sclerotinia sclerotiorum: An Evaluation of Virulence Theories.
Annu Rev Phytopathol. 2018 Aug 25;56:311-338. doi: 10.1146/annurev-phyto-080417-050052. Epub 2018 Jun 29.
8
The Geomycology of Elemental Cycling and Transformations in the Environment.
Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.FUNK-0010-2016.
9
Multilocus resistance evolution to azole fungicides in fungal plant pathogen populations.
Mol Ecol. 2016 Dec;25(24):6124-6142. doi: 10.1111/mec.13916. Epub 2016 Nov 30.
10
Diversity and ecology of oxalotrophic bacteria.
World J Microbiol Biotechnol. 2016 Feb;32(2):28. doi: 10.1007/s11274-015-1982-3. Epub 2016 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验