Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom and Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China.
Microbiol Spectr. 2017 Jan;5(1). doi: 10.1128/microbiolspec.FUNK-0010-2016.
Geomicrobiology addresses the roles of microorganisms in geological and geochemical processes, and geomycology is a part of this topic focusing on the fungi. Geoactive roles of fungi include organic and inorganic transformations important in nutrient and element cycling, rock and mineral bioweathering, mycogenic biomineral formation, and metal-fungal interactions. Lichens and mycorrhizas are significant geoactive agents. Organic matter decomposition is important for cycling of major biomass-associated elements, e.g., C, H, N, O, P, and S, as well as all other elements found in lower concentrations. Transformations of metals and minerals are central to geomicrobiology, and fungi affect changes in metal speciation, as well as mediate mineral formation or dissolution. Such mechanisms are components of biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks, and minerals, e.g., S, P, and metalloids. Fungi may have the greatest geochemical influence within the terrestrial environment. However, they are also important in the aquatic environment and are significant components of the deep subsurface, extreme environments, and habitats polluted by xenobiotics, metals, and radionuclides. Applications of geomycology include metal and radionuclide bioleaching, biorecovery, detoxification, bioremediation, and the production of biominerals or metal(loid) elements with catalytic or other properties. Adverse effects include biodeterioration of natural and synthetic materials, rock and mineral-based building materials (e.g., concrete), cultural heritage, metals, alloys, and related substances and adverse effects on radionuclide mobility and containment. The ubiquity and importance of fungi in the biosphere underline the importance of geomycology as a conceptual framework encompassing the environmental activities of fungi.
地微生物学研究微生物在地质和地球化学过程中的作用,而地真菌学是该主题的一部分,专注于真菌。真菌的地活性作用包括在养分和元素循环、岩石和矿物生物风化、真菌生物矿化和金属-真菌相互作用中重要的有机和无机转化。地衣和菌根是重要的地活性剂。有机质分解对于主要与生物质相关的元素(如 C、H、N、O、P 和 S)以及其他低浓度元素的循环很重要。金属和矿物的转化是地微生物学的核心,真菌会影响金属形态的变化,以及介导矿物的形成或溶解。这些机制是金属以及生物质、土壤、岩石和矿物中相关元素(如 S、P 和类金属)的生物地球化学循环的组成部分。真菌在陆地环境中可能具有最大的地球化学影响。然而,它们在水生环境中也很重要,并且是深部地下、极端环境以及受异生物质、金属和放射性核素污染的栖息地的重要组成部分。地真菌学的应用包括金属和放射性核素的生物浸出、生物回收、解毒、生物修复以及生物矿化或具有催化或其他特性的金属(类金属)元素的生产。不利影响包括天然和合成材料、基于岩石和矿物的建筑材料(如混凝土)、文化遗产、金属、合金和相关物质的生物降解以及对放射性核素迁移和封存的不利影响。真菌在生物圈中的普遍性和重要性强调了地真菌学作为一个概念框架的重要性,该框架包含了真菌的环境活动。