Suppr超能文献

德尔塔放射组学与肿瘤大小:一种用于预测乳腺癌和结直肠癌肝转移化疗反应的新型放射组学模型

Delta Radiomics and Tumor Size: A New Predictive Radiomics Model for Chemotherapy Response in Liver Metastases from Breast and Colorectal Cancer.

作者信息

Gennaro Nicolò, Soliman Moataz, Borhani Amir A, Kelahan Linda, Savas Hatice, Avery Ryan, Subedi Kamal, Trabzonlu Tugce A, Krumpelman Chase, Yaghmai Vahid, Chae Young, Lorch Jochen, Mahalingam Devalingam, Mulcahy Mary, Benson Al, Bagci Ulas, Velichko Yuri S

机构信息

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

Department of Radiological Sciences, University of California Irvine, Irvine, CA 92868, USA.

出版信息

Tomography. 2025 Feb 20;11(3):20. doi: 10.3390/tomography11030020.

Abstract

: Radiomic features exhibit a correlation with tumor size on pretreatment images. However, on post-treatment images, this association is influenced by treatment efficacy and varies between responders and non-responders. This study introduces a novel model, called baseline-referenced Delta radiomics, which integrates the association between radiomic features and tumor size into Delta radiomics to predict chemotherapy response in liver metastases from breast cancer (BC) and colorectal cancer (CRC). : A retrospective study analyzed contrast-enhanced computed tomography (CT) scans of 83 BC patients and 84 CRC patients. Among these, 57 BC patients with 106 liver lesions and 37 CRC patients with 109 lesions underwent post-treatment imaging after systemic chemotherapy. Radiomic features were extracted from up to three lesions per patient following manual segmentation. Tumor response was assessed by measuring the longest diameter and classified according to RECIST 1.1 criteria as progressive disease (PD), partial response (PR), or stable disease (SD). Classification models were developed to predict chemotherapy response using pretreatment data only, Delta radiomics, and baseline-referenced Delta radiomics. Model performance was evaluated using confusion matrix metrics. : Baseline-referenced Delta radiomics performed comparably or better than established radiomics models in predicting tumor response in chemotherapy-treated patients with liver metastases. The sensitivity, specificity, and balanced accuracy in predicting response ranged from 0.66 to 0.97, 0.81 to 0.97, and 80% to 90%, respectively. : By integrating the relationship between radiomic features and tumor size into Delta radiomics, baseline-referenced Delta radiomics offers a promising approach for predicting chemotherapy response in liver metastases from breast and colorectal cancer.

摘要

放射组学特征在治疗前图像上与肿瘤大小存在相关性。然而,在治疗后图像上,这种关联受治疗效果影响,且在反应者和无反应者之间有所不同。本研究引入了一种名为基线参考Delta放射组学的新型模型,该模型将放射组学特征与肿瘤大小之间的关联整合到Delta放射组学中,以预测乳腺癌(BC)和结直肠癌(CRC)肝转移患者的化疗反应。:一项回顾性研究分析了83例BC患者和84例CRC患者的对比增强计算机断层扫描(CT)图像。其中,57例BC患者的106个肝脏病变和37例CRC患者的109个病变在全身化疗后接受了治疗后成像。在手动分割后,从每位患者最多三个病变中提取放射组学特征。通过测量最长直径评估肿瘤反应,并根据RECIST 1.1标准分类为疾病进展(PD)、部分缓解(PR)或疾病稳定(SD)。开发分类模型以仅使用治疗前数据、Delta放射组学和基线参考Delta放射组学来预测化疗反应。使用混淆矩阵指标评估模型性能。:在预测化疗治疗的肝转移患者的肿瘤反应方面,基线参考Delta放射组学的表现与已建立的放射组学模型相当或更好。预测反应的敏感性、特异性和平衡准确率分别为0.66至0.97、0.81至0.97和80%至90%。:通过将放射组学特征与肿瘤大小之间的关系整合到Delta放射组学中,基线参考Delta放射组学为预测乳腺癌和结直肠癌肝转移的化疗反应提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efed/11945686/de99c0948250/tomography-11-00020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验