Chang Hao-Ting, Chern Yinq-Rong, Asri Aji Kusumaning, Liu Wan-Yu, Hsu Chin-Yu, Hsiao Ta-Chih, Chi Kai Hsien, Lung Shih-Chun Candice, Wu Chih-Da
Department of Geomatics, College of Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
Department of Forestry, National Chung Hsing University, Taichung, 402, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
J Environ Manage. 2025 Apr;380:125110. doi: 10.1016/j.jenvman.2025.125110. Epub 2025 Mar 25.
This study addresses a gap in atmospheric greenhouse gas research, focusing on methane (CH), a gas with a global warming potential 80 times greater than carbon dioxide (CO). Unlike prior studies that focus on emission sources and reduction strategies, this research emphasizes the spatiotemporal variations in atmospheric CH concentrations, providing new perspectives on global climate mitigation efforts. A novel GeoAI-based ensemble mixed spatial prediction model was developed, integrating multiple machine learning algorithms and considering various factors to accurately estimate CH concentrations across Taiwan. In the context of global net-zero emissions, this study offers a robust approach to assess spatial variations in CH concentrations, providing valuable insights into the effectiveness of greenhouse gas reduction policies and climate strategies. Key factors influencing CH levels include aquaculture, livestock, transportation land use, wind speed, national CH emissions, net greenhouse gas emissions, population density, quarry sites, solar radiation, seasonal variations, residential areas, temples, CO removal levels, and primary pollutants (e.g., NO, NO, PM., PM, CO, CO, SO, and O). Seasonal analysis revealed higher CH concentrations in spring and winter, and lower levels in summer and autumn. The model demonstrated high explanatory power with R values of 0.99, 0.82, 0.98, and 0.67 across training, testing, cross-validation, and external validation datasets. This study presents a model that enhances the understanding of the dynamic factors influencing methane concentration variations. The methodology developed in this research can serve as a reference for other regions and timeframes, potentially offering key insights for the formulation of effective global climate mitigation strategies.
本研究填补了大气温室气体研究的空白,重点关注甲烷(CH₄),这种气体的全球变暖潜能是二氧化碳(CO₂)的80倍。与以往侧重于排放源和减排策略的研究不同,本研究强调大气CH₄浓度的时空变化,为全球气候缓解努力提供了新视角。开发了一种基于地理人工智能的集成混合空间预测模型,该模型整合了多种机器学习算法并考虑了各种因素,以准确估算台湾地区的CH₄浓度。在全球净零排放的背景下,本研究提供了一种稳健的方法来评估CH₄浓度的空间变化,为温室气体减排政策和气候战略的有效性提供了有价值的见解。影响CH₄水平的关键因素包括水产养殖、畜牧业、交通用地、风速、国家CH₄排放量、温室气体净排放量、人口密度、采石场、太阳辐射、季节变化、居民区、寺庙、CO₂清除水平以及主要污染物(如NO、NO₂、PM₁₀、PM₂.₅、CO、CO₂、SO₂和O₃)。季节分析显示,春季和冬季的CH₄浓度较高,夏季和秋季较低。该模型在训练、测试、交叉验证和外部验证数据集中的R值分别为0.99、0.82、0.98和0.67,显示出很高的解释力。本研究提出了一个模型,可增强对影响甲烷浓度变化的动态因素的理解。本研究中开发的方法可为其他地区和时间框架提供参考,可能为制定有效的全球气候缓解战略提供关键见解。