Zhou Yan-Mei, Jiao Yu-Xin, Fan Jun-Kai, Zhang Run-Xin, Liu Shan, Xu Xue-Ting, Zhu Rongfei, Ji Kunmei, Chen Jia-Jie
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China.
Int J Biol Macromol. 2025 May;308(Pt 2):142302. doi: 10.1016/j.ijbiomac.2025.142302. Epub 2025 Mar 24.
Mast cells (MCs) are therapeutic targets for high-affinity IgE Fc receptors (FcεRI)-mediated allergic responses. Deubiquitinating enzymes (DUBs), including ubiquitin-specific protease 13 (USP13), are involved in multiple inflammatory processes. This study aims to reveal USP13's role in FcεRI-mediated MC activation and its underlying mechanisms. Our results showed USP10/13 inhibitor spautin-1 inhibited IgE-mediated MC activation, as evidenced by a reduction in the release of β-hexosaminidase (β-hex) and histamine and decreased expression and secretion of inflammatory cytokines. Spautin-1 also attenuated inflammatory processes in IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models. Furthermore, knockdown of USP13 by short hairpin (sh)RNA diminished IgE-induced MC activation. Protein-protein interactions assays showed that USP13 interacted with the co-immunoprecipitated protein spleen tyrosine kinase (SYK) and deubiquitinated SYK. USP13 bound the kinase domain of SYK and removed its K63-linked polyubiquitination chain, yielding a more stable SYK protein. Importantly, 2-methoxyestradiol (2-Meth) was identified as a potential inhibitor of USP13 and inhibited FcεRI-mediated MC activation effectively in vitro and in vivo. In conclusion, it elucidated the molecular mechanism by which USP13 regulated SYK stability in MCs. The USP13-SYK axis may serve as a therapeutic target for treating FcεRI-mediated activation of MCs and associated inflammatory responses.