Li Hui, Xie Zhengyang, Gao Tianwei, Liu Jinyi, Lu Wenke, Liu Yue, Wang Shouwei
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.
Materials (Basel). 2025 Mar 11;18(6):1237. doi: 10.3390/ma18061237.
We constructed computational models of bare ZrC and surface-functionalized ZrCT (T = O, S, F, Cl), and utilized first-principles calculations to systematically explore the effects of these surface-functionalized groups on the structural stability, electronic properties, and lithium storage performance of ZrCT. Compared to halogen functional groups (e.g., F, Cl), the structure and electronic properties of ZrC are more profoundly influenced by oxygen group functional elements (O, S). The formation energy of ZrCT (T = O, S) functionalized by the same periodic oxygen group elements is lower than that of ZrCT (T = F, Cl) functionalized by the same periodic halogens. Regarding electronic properties, the oxygen and sulfur functional groups have strong hybridization with ZrC in the valence band and generate a new band structure, which makes the DOS move toward the conduction band. The adsorption energy calculations reveal that lithium ions exhibit stable adsorption on bare ZrC and O/S-functionalized ZrCT surfaces, whereas no stable adsorption occurs on ZrCF or ZrCCl. In terms of adsorbing lithium atoms, bare ZrC tends to adsorb at the HCP position, while ZrCO and ZrCS tend to adsorb at the CCP position. First-principles calculations indicate distinct theoretical lithium storage capacities for ZrC-based materials: monolayer adsorption yields capacities of 180.13 mAh/g (bare ZrC), 162.64 mAh/g (ZrCO), and 148.20 mAh/g (ZrCS); bilayer adsorption significantly increases these values to 360.25, 325.29, and 296.41 mAh/g, respectively.
我们构建了裸露的ZrC以及表面功能化的ZrCT(T = O、S、F、Cl)的计算模型,并利用第一性原理计算系统地探究了这些表面功能化基团对ZrCT的结构稳定性、电子性质和锂存储性能的影响。与卤素功能基团(如F、Cl)相比,ZrC的结构和电子性质受氧族功能元素(O、S)的影响更为深刻。由同一周期的氧族元素功能化的ZrCT(T = O、S)的形成能低于由同一周期的卤素功能化的ZrCT(T = F、Cl)的形成能。关于电子性质,氧和硫功能基团在价带中与ZrC有强烈的杂化作用,并产生新的能带结构,这使得态密度向导带移动。吸附能计算表明,锂离子在裸露的ZrC和O/S功能化的ZrCT表面表现出稳定的吸附,而在ZrCF或ZrCCl上则没有稳定的吸附。就吸附锂原子而言,裸露的ZrC倾向于吸附在六方密堆积(HCP)位置,而ZrCO和ZrCS倾向于吸附在面心立方(CCP)位置。第一性原理计算表明,基于ZrC的材料具有不同的理论锂存储容量:单层吸附的容量分别为180.13 mAh/g(裸露的ZrC)、162.64 mAh/g(ZrCO)和148.20 mAh/g(ZrCS);双层吸附显著提高这些值,分别达到360.25、325.29和296.41 mAh/g。