Huang Bin, Xu Kaidi, Zhao Yu, Li Bohao, Jiang Siyuan, Liu Yaxin, Huang Shengnan, Yang Qingyuan, Gao Tianxiang, Xie Simeng, Chen Huangqin, Li Yuesheng
Department of Stomatology, School of Stomatology and Ophthalmology, Hubei University of Science and Technology, Xianning 437100, China.
Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China.
Molecules. 2025 Mar 10;30(6):1240. doi: 10.3390/molecules30061240.
The S-Scheme heterojunction design offers a promising pathway to enhance the photocatalytic activity of semiconductors for antibiotic degradation in aquatic environments. Graphitic carbon nitride (g-CN) stands out due to its robust visible light absorption, exceptional charge separation efficiency, and abundant active sites, rendering it an ideal candidate for sustainable and energy-efficient photocatalysis. This review delves into the potential of g-CN-based S-Scheme heterojunctions in antibiotic degradation, with a particular emphasis on the photocatalytic principles, inherent advantages, and application prospects. We discuss various semiconductor materials, including metal oxides, multicomponent metal oxides, magnetic oxides, multicomponent magnetic oxides, metal sulfides, and multicomponent metal sulfides, which can be paired with g-CN to fabricate S-Scheme heterojunctions. Furthermore, we explore common preparation techniques for synthesizing g-CN-based S-Scheme heterojunction composites, such as the hydrothermal method, solvothermal method, calcination method, self-assembly method, in situ growth, etc. Additionally, we summarize the applications of these g-CN-based S-Scheme heterojunctions in the degradation of antibiotics, focusing specifically on quinolones and tetracyclines. By providing insights into the development of these heterojunctions, we actively contribute to the ongoing exploration of innovative technologies in the field of photocatalytic antibiotic degradation. Our findings underscore the vast potential of g-CN-based S-Scheme heterojunctions in addressing the challenge of antibiotic contamination in water sources.
S型异质结设计为提高半导体在水环境中降解抗生素的光催化活性提供了一条有前景的途径。石墨相氮化碳(g-CN)因其强大的可见光吸收能力、卓越的电荷分离效率和丰富的活性位点而脱颖而出,使其成为可持续和节能光催化的理想候选材料。本文综述深入探讨了基于g-CN的S型异质结在抗生素降解方面的潜力,特别强调了光催化原理、固有优势和应用前景。我们讨论了各种半导体材料,包括金属氧化物、多组分金属氧化物、磁性氧化物、多组分磁性氧化物、金属硫化物和多组分金属硫化物,它们可以与g-CN配对以制备S型异质结。此外,我们探索了合成基于g-CN的S型异质结复合材料的常见制备技术,如水热法、溶剂热法、煅烧法、自组装法、原位生长等。此外,我们总结了这些基于g-CN的S型异质结在抗生素降解中的应用,特别关注喹诺酮类和四环素类。通过深入了解这些异质结的发展,我们积极推动了光催化抗生素降解领域创新技术的不断探索。我们的研究结果强调了基于g-CN的S型异质结在应对水源抗生素污染挑战方面的巨大潜力。