文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

吸入性脂质体表面电荷对药物疗效和生物相容性的影响。

Effects of Surface Charge of Inhaled Liposomes on Drug Efficacy and Biocompatibility.

作者信息

Zhang Jinniu, Huang Yun, Shen Wenhao, Zeng Yixing, Miao Yingjing, Feng Nianping, Ci Tianyuan

机构信息

School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

出版信息

Pharmaceutics. 2025 Mar 3;17(3):329. doi: 10.3390/pharmaceutics17030329.


DOI:10.3390/pharmaceutics17030329
PMID:40142994
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11945262/
Abstract

Liposomes are a promising drug carrier for inhaled delivery systems and their physical parameters could influence therapeutic efficacy significantly. This study was designed to answer the specific question of the proper surface charge of liposomes in pulmonary inhalation, as well as to study the synergistic anti-inflammation efficacy between drugs. In this work, a series of drug-loaded liposomes with different surface charges (from negative to positive) were prepared, and several in vitro and in vivo assays, including cytotoxicity, hemolysis assay, mucus penetration and lipopolysaccharide (LPS)-induced pneumonia model test, were adopted to evaluate the anti-inflammation efficacy and biocompatibility of the above liposomes. Compared with cationic liposomes, anionic liposomes are capable of better mucus penetration and good biocompatibility (low cytotoxicity, better blood compatibility and mild tissue inflammation), but with poor cellular uptake by immune cells. In specific, even when the liposome surface charge was only +2.6 mV, its cytotoxicity and blood hemolysis reached around 20% and 15%, respectively. Furthermore, there was no significant difference in biocompatibility between anionic liposomes (-25.9 vs. -2.5 mV), but a slightly negative-charged liposome exhibited better cellular uptake. Thus, slightly negative-charged liposomes (-1~-3 mV) could be a well inhaled drug carrier considering both efficacy and biocompatibility. In an LPS-induced pneumonia mouse model, the drug-loaded liposomes achieved better anti-inflammatory efficacy compared with free drugs.

摘要

脂质体是吸入给药系统中一种很有前景的药物载体,其物理参数会显著影响治疗效果。本研究旨在回答肺部吸入中脂质体合适表面电荷的具体问题,同时研究药物之间的协同抗炎效果。在这项工作中,制备了一系列具有不同表面电荷(从负到正)的载药脂质体,并采用了几种体外和体内试验,包括细胞毒性、溶血试验、黏液渗透试验和脂多糖(LPS)诱导的肺炎模型试验,来评估上述脂质体的抗炎效果和生物相容性。与阳离子脂质体相比,阴离子脂质体具有更好的黏液渗透性和良好的生物相容性(低细胞毒性、更好的血液相容性和轻微的组织炎症),但免疫细胞对其细胞摄取较差。具体而言,即使脂质体表面电荷仅为+2.6 mV,其细胞毒性和血液溶血率分别达到约20%和15%。此外,阴离子脂质体(-25.9 mV与-2.5 mV)之间的生物相容性没有显著差异,但表面电荷略为阴性的脂质体表现出更好的细胞摄取。因此,考虑到疗效和生物相容性,表面电荷略为阴性(-1~-3 mV)的脂质体可能是一种良好的吸入性药物载体。在LPS诱导的肺炎小鼠模型中,载药脂质体与游离药物相比具有更好的抗炎效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/099bee4b9430/pharmaceutics-17-00329-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/08c392e2c250/pharmaceutics-17-00329-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/7389a26a29eb/pharmaceutics-17-00329-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/266813651ae4/pharmaceutics-17-00329-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/32adc2352ce6/pharmaceutics-17-00329-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/071dbc806a99/pharmaceutics-17-00329-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/1bef0b21aebb/pharmaceutics-17-00329-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/855d7c7bac80/pharmaceutics-17-00329-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/099bee4b9430/pharmaceutics-17-00329-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/08c392e2c250/pharmaceutics-17-00329-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/7389a26a29eb/pharmaceutics-17-00329-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/266813651ae4/pharmaceutics-17-00329-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/32adc2352ce6/pharmaceutics-17-00329-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/071dbc806a99/pharmaceutics-17-00329-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/1bef0b21aebb/pharmaceutics-17-00329-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/855d7c7bac80/pharmaceutics-17-00329-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4551/11945262/099bee4b9430/pharmaceutics-17-00329-g008.jpg

相似文献

[1]
Effects of Surface Charge of Inhaled Liposomes on Drug Efficacy and Biocompatibility.

Pharmaceutics. 2025-3-3

[2]
Effects of surface charge of low molecular weight heparin-modified cationic liposomes on drug efficacy and toxicity.

Drug Dev Ind Pharm. 2017-7

[3]
Elucidating inhaled liposome surface charge on its interaction with biological barriers in the lung.

Eur J Pharm Biopharm. 2022-3

[4]
Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization.

Theranostics. 2012-11-13

[5]
Exploring the influence of inhaled liposome membrane fluidity on its interaction with pulmonary physiological barriers.

Biomater Sci. 2020-12-7

[6]
Preparation of drug-loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases.

Int J Pharm. 2018-4-17

[7]
The impact of surface charge on the interaction of cholesterol-free fusogenic liposomes with planktonic microbial cells and biofilms.

Int J Pharm. 2025-1-25

[8]
In Vivo Fluorescence Imaging of Passive Inflammation Site Accumulation of Liposomes via Intravenous Administration Focused on Their Surface Charge and PEG Modification.

Pharmaceutics. 2021-1-14

[9]
Enhanced gene delivery efficiency of cationic liposomes coated with PEGylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance.

Int J Pharm. 2014-12-30

[10]
The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses.

Nanoscale. 2011-4-18

引用本文的文献

[1]
Enhancement of antioxidant and cytotoxicity by nanoliposome formulation of pentagamavunon-6 in breast cancer cells.

Naunyn Schmiedebergs Arch Pharmacol. 2025-8-23

[2]
Liposome-Encapsulated Antibiotics for the Therapy of Mycobacterial Infections.

Antibiotics (Basel). 2025-7-20

本文引用的文献

[1]
Engineering Lipid Nanoparticles to Enhance Intracellular Delivery of Transforming Growth Factor-Beta siRNA (siTGF-β1) via Inhalation for Improving Pulmonary Fibrosis Post-Bleomycin Challenge.

Pharmaceutics. 2025-1-24

[2]
Development of Spray-Dried Micelles, Liposomes, and Solid Lipid Nanoparticles for Enhanced Stability.

Pharmaceutics. 2025-1-17

[3]
Pulmonary Delivery of Antibiotics to the Lungs: Current State and Future Prospects.

Pharmaceutics. 2025-1-15

[4]
Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer.

Pharmaceutics. 2024-12-11

[5]
Burden of Infections in Early Life and Risk of Infections and Systemic Antibiotics Use in Childhood.

JAMA Netw Open. 2025-1-2

[6]
Lipid-Polymer Hybrid Nanoparticles in Microparticle-Based Powder: Evaluating the Potential of Methylprednisolone Delivery for Future Lung Disease Treatment via Inhalation.

Pharmaceutics. 2024-11-14

[7]
A Mucous Permeable Local Delivery Strategy Based on Manganese-Enhanced Bacterial Cuproptosis-like Death for Bacterial Pneumonia Treatment.

ACS Nano. 2024-11-19

[8]
Mucus-Penetrable Biomimetic Nanoantibiotics for Pathogen-Induced Pneumonia Treatment.

ACS Nano. 2024-11-12

[9]
Challenges and Opportunities in COPD Management in Latin America: A Review of Inhalation Therapies and Advanced Drug Delivery Systems.

Pharmaceutics. 2024-10-11

[10]
Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization.

Bioact Mater. 2024-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索