Paixão Paulo, Petric Zvonimir, Morais José A G
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-004 Lisboa, Portugal.
Pharmaceutics. 2025 Mar 18;17(3):382. doi: 10.3390/pharmaceutics17030382.
This study applies a Physiologically Based Biopharmaceutics Modeling (PBBM) framework to predict the bioavailability (BA) and bioequivalence (BE) of apixaban, a borderline BCS Class III/IV drug. It investigates how formulation factors, such as particle size, granulation method, and dissolution conditions, affect apixaban's in vivo behavior under fasting conditions. A PBBM approach was developed by integrating physicochemical, formulation, and drug-related parameters to simulate dissolution and absorption using a middle-out strategy for combining in silico, in vitro, and in vivo data. The Noyes-Whitney equation was used to predict dissolution influenced by particle size, granulation type, and in vitro dissolution conditions. This information was added to a compartmental absorption model of the gastrointestinal track connected to a classical compartmental model characterizing apixaban's disposition. The study validated the apixaban PBBM predictions by comparing simulated and observed pharmacokinetic profiles across several doses and immediate release formulations (solution and tablets) administered through the oral route. Results demonstrated acceptable prediction accuracy for BA and BE under various conditions. The model's simulations identified a dissolution safe space, enabling regulatory and development insights into acceptable formulation characteristics. These findings highlight the potential of PBBM in streamlining drug development, reducing clinical studies, and supporting regulatory decisions. Specifically, for apixaban, the study demonstrated that particle sizes below 120 µm ensure BE with reference formulations, while formulations with faster dissolution rates, such as smaller particle sizes, align closely with BCS biowaiver criteria. This research emphasizes PBBM as a valuable tool for optimizing drug quality and lifecycle management.
本研究应用基于生理学的生物药剂学建模(PBBM)框架来预测阿哌沙班(一种边界BCS III/IV类药物)的生物利用度(BA)和生物等效性(BE)。该研究调查了诸如粒径、制粒方法和溶出条件等制剂因素如何影响阿哌沙班在禁食条件下的体内行为。通过整合物理化学、制剂和药物相关参数,采用中观策略结合计算机模拟、体外和体内数据,开发了一种PBBM方法来模拟溶出和吸收。使用Noyes-Whitney方程预测受粒径、制粒类型和体外溶出条件影响的溶出情况。这些信息被添加到胃肠道的房室吸收模型中,该模型与表征阿哌沙班处置情况的经典房室模型相连。该研究通过比较口服给药的几种剂量和速释制剂(溶液和片剂)的模拟和观察到的药代动力学曲线,验证了阿哌沙班PBBM预测结果。结果表明在各种条件下对BA和BE的预测准确性可接受。该模型的模拟确定了一个溶出安全空间,为可接受的制剂特性提供了监管和研发方面的见解。这些发现突出了PBBM在简化药物研发、减少临床研究和支持监管决策方面的潜力。具体而言,对于阿哌沙班,该研究表明粒径低于120 µm可确保与参比制剂具有生物等效性,而溶出速率更快的制剂,如较小粒径的制剂,与BCS生物豁免标准密切相符。本研究强调PBBM是优化药物质量和生命周期管理的宝贵工具。