Tsimpili Helena, Zoidis Grigoris
Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
Pharmaceuticals (Basel). 2025 Mar 5;18(3):369. doi: 10.3390/ph18030369.
The cholinergic pathways in the central nervous system (CNS) play a pivotal role in different cognitive functions of the brain, such as memory and learning. This review takes a dive into the pharmacological side of this important part of CNS function, taking into consideration muscarinic receptors and cholinesterase enzymes. Targeting a specific subtype of five primary muscarinic receptor subtypes (M1-M5) through agonism or antagonism may benefit patients; thus, there is a great pharmaceutical research interest. Inhibition of AChE and BChE, orthosteric or allosteric, or partial agonism of M1 mAChR are correlated with Alzheimer's disease (AD) symptoms improvement. Agonism or antagonism on different muscarinic receptor subunits may lessen schizophrenia symptoms (especially positive allosteric modulation of M4 mAChR). Selective antagonism of M4 mAChR is a promising treatment for Parkinson's disease and dystonia, and the adverse effects are limited compared to inhibition of all five mAChR. Additionally, selective M5 antagonism plays a role in drug independence behavior. M3 mAChR overexpression is associated with malignancies, and M3R antagonists seem to have a therapeutic potential in cancer, while M1R and M2R inhibition leads to reduction of neoangiogenesis. Depending on the type of cancer, agonism of mAChR may promote cancer cell proliferation (as M3R agonism does) or protection against further tumor development (M1R agonism). Thus, there is an intense need to discover new potent compounds with specific action on muscarinic receptor subtypes. Chemical structures, chemical modification of function groups aiming at action enhancement, reduction of adverse effects, and optimization of Drug Metabolism and Pharmacokinetics (DMPK) will be further discussed, as well as protein-ligand docking.
中枢神经系统(CNS)中的胆碱能通路在大脑的不同认知功能(如记忆和学习)中起关键作用。本综述深入探讨了中枢神经系统功能这一重要部分的药理学方面,同时考虑了毒蕈碱受体和胆碱酯酶。通过激动或拮抗作用靶向五种主要毒蕈碱受体亚型(M1 - M5)中的特定亚型可能对患者有益;因此,这引起了极大的药物研究兴趣。抑制乙酰胆碱酯酶(AChE)和丁酰胆碱酯酶(BChE),无论是正构还是变构抑制,或者M1毒蕈碱型乙酰胆碱受体(mAChR)的部分激动作用,都与阿尔茨海默病(AD)症状的改善相关。对不同毒蕈碱受体亚基的激动或拮抗作用可能减轻精神分裂症症状(特别是M4 mAChR的正变构调节)。M4 mAChR的选择性拮抗是帕金森病和肌张力障碍的一种有前景的治疗方法,与抑制所有五种mAChR相比,其不良反应有限。此外,选择性M5拮抗作用在药物戒断行为中起作用。M3 mAChR的过表达与恶性肿瘤相关,M3R拮抗剂似乎在癌症治疗中具有潜力,而抑制M1R和M2R可导致新生血管生成减少。根据癌症类型,mAChR的激动作用可能促进癌细胞增殖(如M3R激动作用)或防止肿瘤进一步发展(M1R激动作用)。因此,迫切需要发现对毒蕈碱受体亚型具有特定作用的新型强效化合物。还将进一步讨论化学结构、旨在增强作用、减少不良反应以及优化药物代谢和药代动力学(DMPK)的官能团化学修饰,以及蛋白质 - 配体对接。