Yi Si, Yan Zhilin, Xiao Yiming, Ye Cuicui, Qiu Huangjie, Zhang Jingwen, Ning Pengpeng, Yang Deren, Du Ning
State Key Laboratory of Silicon and Advanced Semiconductor Materials, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
Carbon One New Energy (Hangzhou) Co., Ltd, Hangzhou, 311100, China.
Small. 2025 May;21(19):e2501524. doi: 10.1002/smll.202501524. Epub 2025 Mar 27.
Silicon monoxide (SiO) has garnered significant attention as a promising anode material for high-energy-density lithium-ion batteries due to its lower volume expansion relative to pure silicon (Si) and its higher capacity compared to graphite. Nevertheless, the poor intrinsic electronic/ionic conductivity and the low initial Coulombic efficiency (ICE) of SiO result in inferior rate capability and inadequate practical energy density, hindering its commercial viability. Here, a simultaneous prelithiation and in situ nitrogen (N) doping approach for SiO utilizing lithium nitride (LiN), which significantly enhances both the ICE and lithium-ion (Li) diffusion kinetics, is proposed. N atoms are not only incorporated into the carbon layer on the surface of SiO but also form a uniformly distributed amorphous LiSiN phase within the SiO, facilitating Li transport. Molecular dynamics simulations demonstrate that the Li diffusion coefficient of amorphous LiSiN is significantly higher than that of other crystalline phases present in the prelithiated SiO matrix. The 1.5 Ah pouch cells further validate that the SiON-0.175/graphite||NCM811 exhibits a high ICE of 88.06%, and it retains 51.5% of its capacity even under 4C fast charging conditions. This study offers new insights into the development of next-generation SiO anode materials with high ICE and high-rate performance.
一氧化硅(SiO)作为一种有前景的高能量密度锂离子电池负极材料受到了广泛关注,因为相对于纯硅(Si),它的体积膨胀较小,且与石墨相比具有更高的容量。然而,SiO固有的电子/离子导电性差以及初始库仑效率(ICE)低,导致其倍率性能较差,实际能量密度不足,阻碍了其商业可行性。在此,提出了一种利用氮化锂(Li₃N)对SiO进行同步预锂化和原位氮(N)掺杂的方法,该方法显著提高了ICE和锂离子(Li)扩散动力学。N原子不仅掺入到SiO表面的碳层中,还在SiO内形成均匀分布的非晶态LiSiN相,促进了Li的传输。分子动力学模拟表明,非晶态LiSiN的Li扩散系数明显高于预锂化SiO基体中存在的其他晶相。1.5 Ah软包电池进一步验证了SiON-0.175/石墨||NCM811的ICE高达88.06%,即使在4C快速充电条件下仍能保持其容量的51.5%。本研究为开发具有高ICE和高倍率性能的下一代SiO负极材料提供了新的见解。