Suppr超能文献

自闭症谱系障碍中机器学习应用的当前研究态势:1999年至2023年的文献计量分析

The Current Research Landscape on the Machine Learning Application in Autism Spectrum Disorder: A Bibliometric Analysis From 1999 to 2023.

作者信息

Li Xinyu, Huang Wei, Tan Rongrong, Xu Caijuan, Chen Xi, Zhang Qian, Li Sixin, Liu Ying, Qiu Huiwen, Bi Changlong, Cao Hui

机构信息

Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.

Department of Psychiatry, Brain Hospital of Hunan Province (The Second People's Hospital of Hunan Province) , Changsha, Hunan, China.

出版信息

Curr Neuropharmacol. 2025 Mar 25. doi: 10.2174/011570159X332833241222191422.

Abstract

BACKGROUND

Language deficits, restricted and repetitive interests, and social difficulties are among the characteristics of autism spectrum disorder (ASD). Machine learning and neuroimaging have also been combined to examine ASD. Utilizing bibliometric analysis, this study examines the current state and hot topics in machine learning for ASD.

OBJECTIVE

A research bibliometric analysis of the machine learning application in ASD trends, including research trends and the most popular topics, as well as proposed future directions for research.

METHODS

From 1999 to 2023, the Web of Science Core Collection (WoSCC) was searched for publications relating to machine learning and ASD. Authors, articles, journals, institutions, and countries were characterized using Microsoft Excel 2021 and VOSviewer. Analysis of knowledge networks, collaborative maps, hotspots, and trends was conducted using VOSviewer and CiteSpace.

RESULTS

A total of 1357 papers were identified between 1999 and 2023. There was a slow growth in publications until 2016; then, between 2017 and 2023, a sharp increase was recorded. Among the most important contributors to this field were the United States, China, India, and England. Among the top major research institutions with numerous publications were Stanford University, Harvard Medical School, the University of California, the University of Pennsylvania, and the Chinese Academy of Sciences. Wall, Dennis P. was the most productive and highest-cited author. Scientific Reports, Frontiers In Neuroscience Autism Research, and Frontiers In Psychiatry were the three productive journals. "autism spectrum disorder", "machine learning", "children", "classification" and "deep learning" are the central topics in this period.

CONCLUSION

Cooperation and communication between countries/regions need to be enhanced in future research. A shift is taking place in the research hotspot from "Alzheimer's Disease", "Mild Cognitive Impairment" and "cortex" to "artificial intelligence", "deep learning", "electroencephalography" and "pediatrics". Crowdsourcing machine learning applications and electroencephalography for ASD diagnosis should be the future development direction. Future research about these hot topics would promote understanding in this field.

摘要

背景

语言缺陷、兴趣受限和重复刻板、社交困难是自闭症谱系障碍(ASD)的特征。机器学习和神经影像学也被结合用于研究ASD。本研究利用文献计量分析,考察机器学习在ASD研究中的现状和热点话题。

目的

对机器学习在ASD研究中的应用进行文献计量分析,包括研究趋势、最热门话题以及提出未来研究方向。

方法

在1999年至2023年期间,检索科学网核心合集(WoSCC)中与机器学习和ASD相关的出版物。使用Microsoft Excel 2021和VOSviewer对作者、文章、期刊、机构和国家进行特征分析。使用VOSviewer和CiteSpace进行知识网络、合作图谱、热点和趋势分析。

结果

1999年至2023年期间共确定了1357篇论文。在2016年之前出版物增长缓慢;然后,在2017年至2023年期间,记录到急剧增长。该领域最重要的贡献者包括美国、中国、印度和英国。发表论文众多的顶级主要研究机构包括斯坦福大学、哈佛医学院、加利福尼亚大学、宾夕法尼亚大学和中国科学院。Wall, Dennis P.是产出最多且被引用次数最多的作者。《科学报告》《神经科学前沿:自闭症研究》和《精神病学前沿》是三本高产期刊。“自闭症谱系障碍”“机器学习”“儿童”“分类”和“深度学习”是这一时期的核心主题。

结论

在未来研究中,需要加强国家/地区之间的合作与交流。研究热点正在从“阿尔茨海默病”“轻度认知障碍”和“皮层”转向“人工智能”“深度学习”“脑电图”和“儿科学”。众包机器学习应用和脑电图用于ASD诊断应是未来的发展方向。对这些热点话题的未来研究将促进该领域的理解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验