Suppr超能文献

脑脊液中磷酸化神经丝重链(pNfH)浓度可预测肌萎缩侧索硬化症的整体疾病侵袭性(D50)。

Phosphorylated neurofilament heavy chain (pNfH) concentration in cerebrospinal fluid predicts overall disease aggressiveness (D50) in amyotrophic lateral sclerosis.

作者信息

Meyer Julia, Gaur Nayana, von der Gablentz Janina, Friedrich Bernd, Roediger Annekathrin, Grosskreutz Julian, Steinbach Robert

机构信息

Precision Neurology of Neuromuscular and Motor Neuron Diseases, University of Lübeck, Lübeck, Germany.

Laboratory Animal Centre, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.

出版信息

Front Neurosci. 2025 Mar 12;19:1536818. doi: 10.3389/fnins.2025.1536818. eCollection 2025.

Abstract

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, characterized by tremendous clinical heterogeneity that necessitates reliable biomarkers for the trajectory of the disease. The potential of phosphorylated Neurofilament-Heavy-chain (pNfH) measured in cerebrospinal fluid (CSF) to mirror disease progressiveness has repeatedly been suggested but is not applicable as outcome on an individual patient-level. This potential was probably obfuscated before due to imprecise clinical measures of disease progression that assumed a linear decline of motoric function over time. The primary objective was therefore to study if disease aggressiveness, as quantified via the D50 model, would reveal more stable correlations with pNfH.

METHODS

ELISA-quantified pNfH CSF levels of 108 patients with ALS were comparatively analyzed in relation to three different measures of disease progression speed via analyses of covariance, linear and non-linear regressions, respectively. These were (a) the D50, depicting a patient's overall disease aggressiveness, (b) cFL, the calculated functional loss-rate as locally derived parameter of progression speed, and (c) DPR, the disease progression-rate as more commonly used linear approximation of points lost per month in the ALS functional rating scale since symptom onset.

RESULTS

All analyses of covariance showed a significant main impact of the respective disease progression-speed parameter on pNfH, independent of disease phase, presence of frontotemporal dementia, analyzing laboratory, sex or clinical onset type, while only age revealed borderline additional influence. Notably, CSF pNfH concentration was independent of how far the disease had progressed, as neither disease phase nor a direct regression with the quantified disease accumulation at the time of lumbar puncture revealed a significant correlation. However, the parameter D50 quantifying aggressiveness showed the most significant impact on pNfH-levels, as compared to the cFL and even more evident in contrast to the DPR. This superiority of D50 was confirmed in direct linear and most evident in non-linear regressions with pNfH.

CONCLUSION

Overall disease aggressiveness in ALS, as quantified by D50, most robustly correlated with CSF pNfH-levels, independent of the time of collection during symptomatic disease. This opens perspectives to use CSF pNfH as a prognostic outcome measure for future therapeutic interventions in the sense of precision medicine.

摘要

引言

肌萎缩侧索硬化症(ALS)是一种进行性神经退行性疾病,其临床异质性极大,因此需要可靠的生物标志物来跟踪疾病发展轨迹。脑脊液(CSF)中测量的磷酸化神经丝重链(pNfH)反映疾病进展的潜力已被多次提及,但在个体患者层面上并不适用于作为预后指标。此前,由于疾病进展的临床测量不准确,假定运动功能随时间呈线性下降,这种潜力可能被掩盖了。因此,主要目的是研究通过D50模型量化的疾病侵袭性是否与pNfH有更稳定的相关性。

方法

通过协方差分析、线性回归和非线性回归,分别将108例ALS患者的ELISA定量CSF中pNfH水平与三种不同的疾病进展速度测量方法进行比较分析。这三种方法分别是:(a)D50,描述患者的整体疾病侵袭性;(b)cFL,计算得出的功能丧失率,作为局部得出的进展速度参数;(c)DPR,疾病进展率,是自症状出现以来ALS功能评分量表中每月丧失分数的更常用线性近似值。

结果

所有协方差分析均显示,各自的疾病进展速度参数对pNfH有显著的主要影响,与疾病阶段、额颞叶痴呆的存在、分析实验室、性别或临床发病类型无关,而只有年龄显示出临界的额外影响。值得注意的是,CSF中pNfH浓度与疾病进展程度无关,因为疾病阶段或与腰椎穿刺时量化的疾病累积量的直接回归均未显示出显著相关性。然而,与cFL相比,量化侵袭性的参数D50对pNfH水平的影响最为显著,与DPR相比则更为明显。D50的这种优越性在与pNfH的直接线性回归中得到证实,在非线性回归中最为明显。

结论

通过D50量化的ALS整体疾病侵袭性与CSF中pNfH水平的相关性最为稳健,与症状性疾病期间的采集时间无关。这为在精准医学意义上使用CSF中pNfH作为未来治疗干预的预后指标开辟了前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13d2/11936903/987845888c06/fnins-19-1536818-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验