Suppr超能文献

使用贝叶斯潜在模型估计亚马逊地区城乡儿童的双重营养不良负担。

Estimating double burden of malnutrition among rural and urban children in Amazonia using Bayesian latent models.

作者信息

Orellana Jesem Douglas Yamall, Parry Luke, Santos Francine Silva Dos, Moreira Laísa Rodrigues, Carignano Torres Patricia, Balieiro Antônio Alcirley da Silva, Fonseca Fernanda Rodrigues, Moraga Paula, Chacón-Montalván Erick Albacharro

机构信息

Instituto Leônidas & Maria Deane (ILMD/Fiocruz Amazônia), Manaus, Amazonas, Brazil.

Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom.

出版信息

Front Public Health. 2025 Mar 12;13:1481397. doi: 10.3389/fpubh.2025.1481397. eCollection 2025.

Abstract

BACKGROUND

The double burden of malnutrition (DBM) in the same individual is a neglected public health concern, especially in low- and middle-income countries (LMICs). The DBM is associated with increased risks of non-communicable diseases, childbirth complications, and healthcare costs related to obesity in adulthood. However, evaluating low prevalence outcomes in relatively small populations is challenging using conventional frequentist statistics. Our study used Bayesian latent models to estimate DBM prevalence at the individual-level in small populations located in remote towns and rural communities in the Brazilian Amazon.

METHODS

We employed a cross-sectional survey of urban and rural children aged 6-59 months, considering DBM as the coexistence of stunting and overweight in the same individual. We evaluated four river-dependent municipalities, sampling children in randomly selected households in each town and a total of 60 riverine forest-proximate communities. Through Bayesian modeling we estimated the latent double burden of malnutrition (LDBM) and credible intervals (CI).

RESULTS

The exceedance probability of LDBM was used to quantify this form of malnutrition at the population level. Rural prevalence of LDBM was significantly higher in Jutai (3.3%; CI: 1.5% to 6.7%) compared to Maues and Caapiranga. The likelihood that LDBM rural prevalence exceeded 1% was very high in Jutai (99.7%), and Ipixuna (63.2%), and very low (< 2%) in rural communities elsewhere. Exceedance probabilities (at 1%) also varied widely among urban sub-populations, from 6.7% in Maues to 41.2% in Caapiranga. The exceedance probability of LDBM prevalence being above 3.0% was high in rural Jutai (59.7%).

DISCUSSION

Our results have important implications for assessing DBM in vulnerable and marginalized populations, where health and nutritional status are often poorest, and public health efforts remain focused on undernutrition. Our analytical approach could enable more accurate estimation of low prevalence health outcomes, and strengthen DBM monitoring of hard-to-reach populations.

摘要

背景

同一人群中营养不良的双重负担(DBM)是一个被忽视的公共卫生问题,在低收入和中等收入国家(LMICs)尤为如此。DBM与非传染性疾病、分娩并发症以及成年期肥胖相关的医疗费用增加风险有关。然而,使用传统的频率统计方法来评估相对较小人群中的低患病率结果具有挑战性。我们的研究使用贝叶斯潜在模型来估计巴西亚马逊偏远城镇和农村社区小群体中个体层面的DBM患病率。

方法

我们对6至59个月大的城乡儿童进行了横断面调查,将DBM定义为同一人群中发育迟缓与超重并存的情况。我们评估了四个依赖河流的市镇,在每个城镇随机选择的家庭中抽取儿童样本,并总共选取了60个靠近河流森林的社区。通过贝叶斯建模,我们估计了潜在的营养不良双重负担(LDBM)和可信区间(CI)。

结果

LDBM的超概率用于在人群层面量化这种营养不良形式。与马埃斯和卡皮兰加相比,朱泰的农村LDBM患病率显著更高(3.3%;CI:1.5%至6.7%)。朱泰(99.7%)和伊皮苏纳(63.2%)农村地区LDBM患病率超过1%的可能性非常高,而其他农村社区则非常低(<2%)。城市亚人群中超概率(1%时)也有很大差异,从马埃斯的6.7%到卡皮兰加的41.2%。朱泰农村地区LDBM患病率高于3.0%的超概率很高(59.7%)。

讨论

我们的结果对于评估弱势群体和边缘化人群中的DBM具有重要意义,这些人群的健康和营养状况往往最差,而公共卫生工作仍集中在营养不良方面。我们的分析方法可以更准确地估计低患病率的健康结果,并加强对难以到达人群的DBM监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cc5/11937108/28f82c8a7499/fpubh-13-1481397-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验