Aguilera Anabella, Lundin Daniel, Charalampous Evangelia, Churakova Yelena, Tellgren-Roth Christian, Śliwińska-Wilczewska Sylwia, Conley Daniel J, Farnelid Hanna, Pinhassi Jarone
Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linneaus University, Kalmar, Sweden.
Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
Appl Environ Microbiol. 2025 Apr 23;91(4):e0252724. doi: 10.1128/aem.02527-24. Epub 2025 Mar 27.
Through biosilicification, organisms incorporate dissolved silica (dSi) and deposit it as biogenic silica (bSi), driving the silicon (Si) cycle in aquatic systems. While Si accumulation in marine picocyanobacteria has been recently observed, its mechanisms and ecological implications remain unclear. This study investigates biosilicification in marine and brackish picocyanobacteria of the clade and two model freshwater coccoid cyanobacteria. Brackish strains showed significantly higher Si quotas when supplemented with external dSi (100 µM) compared to controls (up to 60.0 ± 7.3 amol Si.cell-1 versus 9.2 to 16.3 ± 2.9 amol Si.cell-1). Conversely, freshwater strains displayed no significant differences in Si quotas between dSi-enriched treatments and controls, emphasizing that not all phytoplanktons without an obligate Si requirement accumulate this element. The Si-accumulating marine and brackish picocyanobacteria clustered within the clade, whereas their freshwater counterparts formed a distinct sister group, suggesting a link between phylogeny and silicification. Rapid culture growth caused increased pH and led to dSi precipitation, influencing apparent dSi uptake; this was mitigated by pH control through bubbling. This phenomenon has significant implications for natural systems affected by phytoplankton blooms. In such environments, pH-induced silicon precipitation may reduce dSi availability impacting Si-dependent populations like diatoms. Our findings suggest brackish picocyanobacteria could significantly influence the Si cycle through at least two mechanisms: cellular Si accumulation and biologically induced changes in dSi concentrations.IMPORTANCEThis work provides the first evidence of biogenic silica accumulation in brackish picocyanobacteria and uncovers a link between phylogeny and biosilicification patterns. Our findings demonstrate that picocyanobacterial growth induces pH-dependent silica precipitation, which could lead to overestimations of cellular Si quotas by up to 85%. This process may drive substantial silica precipitation in highly productive freshwater and coastal marine systems, with potential effects on silica cycling and the population dynamics of Si-dependent phytoplankton. The extent of biosilicification in modern picocyanobacteria offers insights into the rock record, shedding light on the evolutionary and ecological dynamics that influence sedimentary processes and the preservation of biosilicification signatures in geological formations. Overall, this research adds to the significant impact that microorganisms lacking an obligate silica requirement may have on silica dynamics.
通过生物硅化作用,生物体吸收溶解态硅(dSi)并将其沉积为生物源硅(bSi),从而驱动水生系统中的硅(Si)循环。虽然最近观察到海洋聚球蓝细菌中有硅积累现象,但其机制和生态影响仍不清楚。本研究调查了该进化枝的海洋和咸淡水聚球蓝细菌以及两种淡水球形蓝细菌模式生物中的生物硅化作用。与对照组相比,当添加外部dSi(100 μM)时,咸淡水菌株的硅配额显著更高(高达60.0±7.3 amol Si·细胞-1,而对照组为9.2至16.3±2.9 amol Si·细胞-1)。相反,淡水菌株在富含dSi的处理组和对照组之间的硅配额没有显著差异,这表明并非所有非必需硅的浮游植物都会积累这种元素。积累硅的海洋和咸淡水聚球蓝细菌聚集在该进化枝内,而它们的淡水同类形成了一个独特的姐妹群,这表明系统发育与硅化作用之间存在联系。快速的培养生长导致pH值升高并导致dSi沉淀,影响表观dSi吸收;通过鼓泡控制pH值可减轻这种影响。这种现象对受浮游植物水华影响的自然系统具有重要意义。在这样的环境中,pH值诱导的硅沉淀可能会降低dSi的可用性,影响像硅藻这样依赖硅的种群。我们的研究结果表明,咸淡水聚球蓝细菌可能通过至少两种机制显著影响硅循环:细胞硅积累和生物诱导的dSi浓度变化。
重要性
这项工作提供了咸淡水聚球蓝细菌中生物源硅积累的首个证据,并揭示了系统发育与生物硅化模式之间的联系。我们的研究结果表明,聚球蓝细菌的生长会诱导pH值依赖性的硅沉淀,这可能导致细胞硅配额的高估高达85%。这个过程可能会在高产的淡水和沿海海洋系统中驱动大量的硅沉淀,对硅循环以及依赖硅的浮游植物的种群动态产生潜在影响。现代聚球蓝细菌中的生物硅化程度为岩石记录提供了见解,揭示了影响沉积过程和地质构造中生物硅化特征保存的进化和生态动态。总体而言,这项研究进一步证明了非必需硅的微生物可能对硅动态产生重大影响。