Suppr超能文献

利用图像分析对氧化石墨烯纳米颗粒的微生物还原进行稳健测量。

Robust measurement of microbial reduction of graphene oxide nanoparticles using image analysis.

作者信息

Bennett Danielle T, Meyer Anne S

机构信息

Department of Biology, University of Rochester, Rochester, New York, USA.

出版信息

Appl Environ Microbiol. 2025 Apr 23;91(4):e0036025. doi: 10.1128/aem.00360-25. Epub 2025 Mar 27.

Abstract

() has the capacity to reduce electron acceptors within a medium and is thus used frequently in microbial fuel generation, pollutant breakdown, and nanoparticle fabrication. Microbial fuel setups, however, often require costly or labor-intensive components, thus making optimization of their performance onerous. For rapid optimization of setup conditions, a model reduction assay can be employed to allow simultaneous, large-scale experiments at lower cost and effort. Since uses different extracellular electron transfer pathways depending on the electron acceptor, it is essential to use a reduction assay that mirrors the pathways employed in the microbial fuel system. For microbial fuel setups that use nanoparticles to stimulate electron transfer, reduction of graphene oxide provides a more accurate model than other commonly used assays as it is a bulk material that forms flocculates in solutions with a large ionic component. However, graphene oxide flocculates can interfere with traditional absorbance-based measurement techniques. This study introduces a novel image analysis method for quantifying graphene oxide reduction, showing improved performance and statistical accuracy over traditional methods. A comparative analysis shows that the image analysis method produces smaller errors between replicates and reveals more statistically significant differences between samples than traditional plate reader measurements under conditions causing graphene oxide flocculation. Image analysis can also detect reduction activity at earlier time points due to its use of larger solution volumes, enhancing color detection. These improvements in accuracy make image analysis a promising method for optimizing microbial fuel cells that use nanoparticles or bulk substrates.IMPORTANCE () is widely used in reduction processes such as microbial fuel generation due to its capacity to reduce electron acceptors. Often, these setups are labor-intensive to operate and require days to produce results, so use of a model assay would reduce the time and expenses needed for optimization. Our research developed a novel digital analysis method for analysis of graphene oxide flocculates that may be utilized as a model assay for reduction platforms featuring nanoparticles. Use of this model reduction assay will enable rapid optimization and drive improvements in the microbial fuel generation sector.

摘要

(某物质)能够在介质中还原电子受体,因此常用于微生物燃料生产、污染物分解和纳米颗粒制造。然而,微生物燃料装置通常需要昂贵或劳动密集型的组件,因此优化其性能很困难。为了快速优化装置条件,可以采用模型简化分析方法,以便以较低的成本和工作量同时进行大规模实验。由于(某物质)根据电子受体使用不同的细胞外电子转移途径,因此必须使用一种能反映微生物燃料系统中所采用途径的还原分析方法。对于使用纳米颗粒来刺激电子转移的微生物燃料装置,氧化石墨烯的还原提供了一个比其他常用分析方法更准确的模型,因为它是一种在含有大量离子成分的溶液中会形成絮凝物的块状材料。然而,氧化石墨烯絮凝物会干扰传统的基于吸光度的测量技术。本研究引入了一种用于量化氧化石墨烯还原的新型图像分析方法,与传统方法相比,其性能和统计准确性都有所提高。一项对比分析表明,在导致氧化石墨烯絮凝的条件下,图像分析方法在重复测量之间产生的误差更小,并且与传统酶标仪测量相比,能揭示出样本之间在统计学上更显著的差异。图像分析还可以在更早的时间点检测到还原活性,因为它使用了更大的溶液体积,增强了颜色检测。这些准确性的提高使图像分析成为优化使用纳米颗粒或块状底物的微生物燃料电池的一种有前景的方法。重要性 (某物质)因其还原电子受体的能力而广泛用于微生物燃料生产等还原过程。通常,这些装置操作起来劳动强度大,需要数天才能得出结果,因此使用模型分析将减少优化所需的时间和费用。我们的研究开发了一种用于分析氧化石墨烯絮凝物的新型数字分析方法,该方法可用作具有纳米颗粒的还原平台的模型分析。使用这种模型简化分析将能够实现快速优化,并推动微生物燃料生产领域的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bcad/12016504/d25a8bbf3c4c/aem.00360-25.f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验