Suppr超能文献

原位组装工程诱导的3D MOF驱动的MXene框架用于高稳定性钠金属负极

In Situ Assembly Engineering-Induced 3D MOF-Driven MXene Framework for Highly Stable Na Metal Anodes.

作者信息

Zhang Yiming, Li Zhipeng, Qu Baihua, Shen Xing, Tong Le, Wang Jin, Cui Jingqin, Li Xin, Xie Qingshui, Wang Jingfeng

机构信息

College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, P. R. China.

Chongqing Institute of New Energy Storage Materials and Equipment, Chongqing 401135, P. R. China.

出版信息

Inorg Chem. 2025 Apr 14;64(14):6822-6831. doi: 10.1021/acs.inorgchem.4c04230. Epub 2025 Mar 27.

Abstract

Sodium metal, with its high theoretical capacity, low redox potential, and cost-effectiveness, presents a promising anode candidate for next-generation high-energy-density batteries. However, the development of Na metal anodes is significantly challenged by issues such as uncontrolled dendrite growth, uncontrolled volume expansion, and associated safety concerns. Designing and developing advanced materials to enhance the conductivity of sodium metal anodes and promote uniform sodium ion deposition are of urgent importance. Herein, a MXene-based hybrid material was developed by integrating MOF-derived Zn, Co, N, and C dopants with TiCT MXene to serve as a hosting substrate for the Na metal anode. The MXene provided a conductive framework, while the MOF-derived dopants introduced sodiophilic sites, promoting uniform Na deposition and mitigating volume expansion. The optimized material demonstrated an average Coulombic efficiency of 99.99% over 3000 cycles and stable cycling for over 5000 h in symmetrical cells and maintained over 80% capacity retention at 3 C after 500 cycles in full-cell tests, highlighting its potential as a robust Na metal anode material.

摘要

金属钠具有高理论容量、低氧化还原电位和成本效益,是下一代高能量密度电池有前景的负极候选材料。然而,钠金属负极的发展受到诸如枝晶生长失控、体积膨胀失控以及相关安全问题的显著挑战。设计和开发先进材料以提高钠金属负极的导电性并促进钠离子均匀沉积至关重要。在此,通过将金属有机框架(MOF)衍生的锌、钴、氮和碳掺杂剂与TiCT MXene集成,开发了一种基于MXene的混合材料,用作钠金属负极的主体基底。MXene提供了导电框架,而MOF衍生的掺杂剂引入了亲钠位点,促进了钠的均匀沉积并减轻了体积膨胀。优化后的材料在对称电池中3000次循环的平均库仑效率为99.99%,并在5000多小时内保持稳定循环,在全电池测试中,500次循环后在3 C下容量保持率超过80%,突出了其作为一种坚固的钠金属负极材料的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验