Suppr超能文献

基于数字孪生的桥梁基础设施循环资产管理战略拆除计划

Digital twin-driven strategic demolition plan for circular asset management of bridge infrastructures.

作者信息

Kaewunruen Sakdirat, O'Neill Connor, Sengsri Pasakorn

机构信息

Department of Civil Engineering, School of Engineering, University of Birmingham, Edgbaston, B152TT, UK.

Digital Asset Management, AtkinsRéalis, Birmingham, UK.

出版信息

Sci Rep. 2025 Mar 27;15(1):10554. doi: 10.1038/s41598-025-94117-8.

Abstract

Economic growth plays an important role in the rapid increase in construction of transportation and bridge infrastructures, which in turn causes enormous greenhouse gas emissions contributing directly to climate change. An innovative and effective method, so-called Building Information Modeling (BIM), to sustainably manage detailed lifecycle of infrastructures, has been recently adopted to revolutionise the Architecture, Engineering and Construction (AEC) industry. Its major function is to sustainably optimise all detailed stages of an infrastructure asset's lifecycle. A three-dimensional architectural BIM incorporating three additional dimensions (time, cost, and carbon emissions) has then been created in this study to virtualise the whole lifecycle performance of bridge infrastructure through BIM data. For circular asset management, multi-scale details of assets and infrastructures are indispensable. On this ground, these information dimensions are highly critical to asset managers to assure not only public safety, but also sustainability over the whole lifecycle. It is thus critical to quantify carbon footprint in order to identify better alternative solutions for construction and maintenance, resulting in carbon neutrality and carbon credit. Our digital twin (DT), driven by the BIM, has embedded demolition scenarios whose lifecycle cost and carbon footprint can be quantified and optimized simultaneously. Our study is the first to also demonstrate circular end-of-life management through strategic demolition planning that enhances circular economy practice. This aspect is novel and has not been commonly adopted in practice. Our study reveals that the construction stage of the asset lifecycle for this study is the main contributor to carbon emissions and costs stemming from raw materials and their productions. This eventually leads to significant waste at the end of asset's life, requiring strategic demolition plan to maximise reuse, repurpose, and recycle of materials, parts and components. Our innovative DT is capable of dealing with the cradle-to-cradle lifecycle management. Another co-benefit of using the BIM-based digital twin is to minimise streamlining design, re-work, mitigating risk, and real time processing of design changes in all stakeholders, reducing the effect on carbon emissions, costs, and time schedules. All dimensions (i.e. 6D) can be updated and re-calculated in real time when cross-linked with inspections and condition monitoring, generating real-time digital twin driven solutions.

摘要

经济增长在交通和桥梁基础设施建设的快速增长中发挥着重要作用,而这反过来又导致大量温室气体排放,直接促成气候变化。一种创新且有效的方法,即所谓的建筑信息模型(BIM),已被用于可持续地管理基础设施的详细生命周期,最近它被采用来彻底改变建筑、工程和施工(AEC)行业。其主要功能是可持续地优化基础设施资产生命周期的所有详细阶段。本研究随后创建了一个包含三个额外维度(时间、成本和碳排放)的三维建筑BIM,以通过BIM数据虚拟桥梁基础设施的整个生命周期性能。对于循环资产管理而言,资产和基础设施的多尺度细节不可或缺。基于此,这些信息维度对资产管理者至关重要,不仅能确保公共安全,还能保证整个生命周期的可持续性。因此,量化碳足迹以确定更好的建设和维护替代方案,从而实现碳中和和碳信用至关重要。我们由BIM驱动的数字孪生(DT)嵌入了拆除场景,其生命周期成本和碳足迹可以同时进行量化和优化。我们的研究也是首次通过战略拆除规划展示循环报废管理,这增强了循环经济实践。这一方面是新颖的,在实践中尚未普遍采用。我们的研究表明,本研究中资产生命周期的建设阶段是原材料及其生产所产生的碳排放和成本的主要贡献者。这最终导致资产寿命结束时产生大量浪费,需要战略拆除计划以最大限度地提高材料、零部件的再利用、重新利用和回收。我们创新的DT能够处理从摇篮到摇篮的生命周期管理。使用基于BIM的数字孪生的另一个共同好处是,在所有利益相关者中最大限度地简化设计、减少返工、降低风险并实时处理设计变更,减少对碳排放、成本和时间表的影响。当与检查和状态监测交叉链接时,所有维度(即6D)都可以实时更新和重新计算,生成由实时数字孪生驱动的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a86f/11950195/46f60d7c3f2e/41598_2025_94117_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验