Suppr超能文献

基于极化自注意力辅助信道估计神经网络的大规模MIMO系统信道估计

Channel Estimation for Massive MIMO Systems via Polarized Self-Attention-Aided Channel Estimation Neural Network.

作者信息

Yang Shuo, Li Yong, Liu Lizhe, Xia Jing, Wang Bin, Li Xingjian

机构信息

54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China.

National Key Laboratory of Advanced Communication Networks, Shijiazhuang 050081, China.

出版信息

Entropy (Basel). 2025 Feb 21;27(3):220. doi: 10.3390/e27030220.

Abstract

Research on deep learning (DL)-based channel estimation for massive multiple-input multiple-output (MIMO) communication systems has attracted considerable interest in recent years. In this paper, we propose a DL-assisted channel estimation algorithm that transforms the original channel estimation problem into an image denoising problem, contrasting it with traditional experience-based channel estimation methods. We establish a new polarized self-attention-aided channel estimation neural network (PACE-Net) to achieve efficient channel estimation. This approach addresses the limitations of the conventional methods, particularly their low accuracy and high computational complexity. In addition, we construct a channel dataset to facilitate the training and testing of PACE-Net. The simulation results show that the proposed DL-assisted channel estimation algorithm has better normalization mean square error (NMSE) performance compared with the traditional algorithms and other DL-assisted algorithms. Furthermore, the computational complexity of the proposed DL-assisted algorithm is significantly lower than that of the traditional minimum mean square error (MMSE) channel estimation algorithm.

摘要

近年来,针对大规模多输入多输出(MIMO)通信系统基于深度学习(DL)的信道估计研究引起了广泛关注。在本文中,我们提出了一种DL辅助的信道估计算法,该算法将原始信道估计问题转化为图像去噪问题,并与传统的基于经验的信道估计方法进行对比。我们建立了一种新的极化自注意力辅助信道估计神经网络(PACE-Net)以实现高效的信道估计。这种方法克服了传统方法的局限性,尤其是它们的低精度和高计算复杂度。此外,我们构建了一个信道数据集以促进PACE-Net的训练和测试。仿真结果表明,与传统算法和其他DL辅助算法相比,所提出的DL辅助信道估计算法具有更好的归一化均方误差(NMSE)性能。此外,所提出的DL辅助算法的计算复杂度明显低于传统的最小均方误差(MMSE)信道估计算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2e9/11941297/71b01e7b217e/entropy-27-00220-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验