Sánchez-Bayona Rodrigo, Catalán Camila, Cobos Maria Angeles, Bergamino Milana
Medical Oncology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain.
Medical Oncology, Universidad Finis Terrae, Santiago 7501014, Chile.
Cancers (Basel). 2025 Mar 7;17(6):913. doi: 10.3390/cancers17060913.
Pharmacogenomics, the study of how genetic variations influence drug response, has become integral to cancer treatment as personalized medicine evolves. This review aims to explore key pharmacogenomic biomarkers relevant to cancer therapy and their clinical implications, providing an updated and comprehensive perspective on how genetic variations impact drug metabolism, efficacy, and toxicity in oncology. Genetic heterogeneity among oncology patients significantly impacts drug efficacy and toxicity, emphasizing the importance of incorporating pharmacogenomic testing into clinical practice. Genes such as , , , , , KRAS, and play pivotal roles in influencing the metabolism, efficacy, and adverse effects of various chemotherapeutic agents, targeted therapies, and immunotherapies. For example, polymorphisms affect tamoxifen metabolism in breast cancer, while variants can result in severe toxicities in patients receiving fluoropyrimidines. Mutations in and have significant implications for the use of targeted therapies in lung and colorectal cancers, respectively. Additionally, mutations predict the efficacy of PARP inhibitors in breast and ovarian cancer. Ongoing research in polygenic risk scores, liquid biopsies, gene-drug interaction networks, and immunogenomics promises to further refine pharmacogenomic applications, improving patient outcomes and reducing treatment-related adverse events. This review also discusses the challenges and future directions in pharmacogenomics, including the integration of computational models and CRISPR-based gene editing to better understand gene-drug interactions and resistance mechanisms. The clinical implementation of pharmacogenomics has the potential to optimize cancer treatment by tailoring therapies to an individual's genetic profile, ultimately enhancing therapeutic efficacy and minimizing toxicity.
药物基因组学,即研究基因变异如何影响药物反应的学科,随着个性化医学的发展,已成为癌症治疗中不可或缺的一部分。本综述旨在探讨与癌症治疗相关的关键药物基因组学生物标志物及其临床意义,就基因变异如何影响肿瘤学中药物代谢、疗效和毒性提供一个更新的、全面的观点。肿瘤患者之间的基因异质性显著影响药物疗效和毒性,强调了将药物基因组学检测纳入临床实践的重要性。诸如 、 、 、 、 、KRAS和 等基因在影响各种化疗药物、靶向治疗和免疫治疗的代谢、疗效和不良反应方面发挥着关键作用。例如, 基因多态性影响乳腺癌中他莫昔芬的代谢,而 基因变异可导致接受氟嘧啶治疗的患者出现严重毒性。 基因和 基因的突变分别对肺癌和结直肠癌中靶向治疗的使用具有重要意义。此外, 基因突变可预测PARP抑制剂在乳腺癌和卵巢癌中的疗效。在多基因风险评分、液体活检、基因-药物相互作用网络和免疫基因组学方面的持续研究有望进一步完善药物基因组学应用,改善患者预后并减少治疗相关不良事件。本综述还讨论了药物基因组学的挑战和未来方向,包括整合计算模型和基于CRISPR的基因编辑以更好地理解基因-药物相互作用和耐药机制。药物基因组学的临床应用有可能通过根据个体基因谱定制治疗方案来优化癌症治疗,最终提高治疗效果并将毒性降至最低。