Suppr超能文献

双模态成像揭示线粒体自噬过程中线粒体内膜黏度和呼吸动力学

Dual-Modality Imaging Unveil Inner Mitochondrial Membrane Viscosity and Respiratory Dynamics in Mitophagy.

作者信息

Peng Fei, Ai Xiangnan, Hao Bin, Bu Xiaoyu, Zhao Zixuan, Yang Linshuai, Gao Baoxiang

机构信息

College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.

School of New Materials and Chemical Engineering, Tangshan University, Tangshan 063000, China.

出版信息

Anal Chem. 2025 Apr 8;97(13):7490-7500. doi: 10.1021/acs.analchem.5c00464. Epub 2025 Mar 27.

Abstract

Mitophagy is a vital lysosome-dependent process that maintains mitochondrial integrity and cellular homeostasis, where respiration and inner mitochondrial membrane (IMM) viscosity play key roles. Despite its critical importance, achieving a high-resolution and dynamic visualization of respiration and IMM viscosity during mitophagy remains a significant challenge. In this study, we designed two innovative fluorescent probes: SiR-C8, a viscosity-sensitive rotor-type probe based on silicon-rhodamine, specifically targeting the IMM, and OR-ATP, a rhodamine-derived probe utilizing an intramolecular spirolactam structure to respond to mitochondrial ATP levels. Leveraging fluorescence intensity and lifetime dual-modality imaging, we successfully enabled the high-resolution, real-time monitoring of lysosome-dependent mitophagy. Remarkably, our results unveiled a progressive increase in IMM viscosity alongside a significant attenuation in mitochondrial respiration during mitophagy induced by starvation, carbonyl cyanide, -chlorophenyl hydrazone (CCCP), and Oligomycin. Significantly, utilizing structured illumination microscopy super-resolution imaging, we have uncovered a novel mitochondrial quality control mechanism by which lysosomes selectively engulf locally damaged mitochondrial regions. This discovery provides novel insights into the intricate processes governing mitophagy and introduces an innovative platform for studying mitochondrial dynamics, dysfunction, and their implications for cellular homeostasis and pathology.

摘要

线粒体自噬是一种重要的依赖溶酶体的过程,可维持线粒体完整性和细胞内稳态,其中呼吸作用和线粒体内膜(IMM)粘度起着关键作用。尽管其至关重要,但在自噬过程中实现对呼吸作用和IMM粘度的高分辨率动态可视化仍然是一项重大挑战。在本研究中,我们设计了两种创新的荧光探针:SiR-C8,一种基于硅罗丹明的粘度敏感转子型探针,特异性靶向IMM;以及OR-ATP,一种利用分子内螺环结构响应线粒体ATP水平的罗丹明衍生探针。利用荧光强度和寿命双模态成像,我们成功实现了对依赖溶酶体的线粒体自噬的高分辨率实时监测。值得注意的是,我们的结果揭示了在饥饿、羰基氰化物-氯苯腙(CCCP)和寡霉素诱导的自噬过程中,IMM粘度逐渐增加,同时线粒体呼吸作用显著减弱。重要的是,利用结构光照显微镜超分辨率成像,我们发现了一种新的线粒体质量控制机制,即溶酶体选择性吞噬局部受损的线粒体区域。这一发现为自噬的复杂过程提供了新的见解,并引入了一个研究线粒体动态、功能障碍及其对细胞内稳态和病理学影响的创新平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验