Suppr超能文献

一种基于心理韧性理论和认知行为理论的用于调查大学生网络成瘾的混合扫描电子显微镜-人工神经网络方法

A Hybrid SEM-ANN Approach to Investigate the Internet Addiction Among University Students Based on Psychological Resilience Theory and Cognitive-Behavioral Theory.

作者信息

Li Jinyu, Huang Ling, Dun Minqi

机构信息

School of Marxism, Yangzhou University, Yangzhou, China.

Department of Art and Sports, Huanghe Science and Technology University, Zhengzhou, China.

出版信息

Psychol Rep. 2025 Mar 28:332941251330549. doi: 10.1177/00332941251330549.

Abstract

The internet is now essential in college students' lives, but its overuse is turning into a worldwide issue, notably with rising internet addiction among students. Earlier studies have mainly explored the risk factors of internet addiction, yielding various findings. This study aims to delve into the key factors affecting internet addiction among university students by integrating the theory of psychological resilience with cognitive-behavioral theory. It thoroughly analyzes how self-control, emotional regulation, social support, perceived stress, and psychological resilience influence internet addiction and explores their interactions and underlying mechanisms. The study conveniently selected 999 university students for a survey to measure their self-reported ratings on six constructs: self-control, emotional regulation, perceived stress, psychological resilience, social support, and internet addiction. Employing a Structural Equation Modeling - Artificial Neural Network (SEM-ANN) approach, the study unveiled complex and non-linear relationships between predictors and internet addiction. Results indicated that self-control and psychological resilience significantly reduce internet addiction, while perceived stress notably increases the risk. Notably, emotional regulation and social support did not directly lower the risk of internet addiction. Further analysis revealed that psychological resilience plays a mediating role between self-control, emotional regulation, social support, and internet addiction. Additionally, multilayer perceptron analysis of normalized importance showed self-control as the most critical predictive factor (100%), followed by emotional regulation (9.1%), social support (8.4%), and psychological resilience (5.4%). The study contributes theoretical and practical insights into internet addiction among university students.

摘要

互联网如今在大学生的生活中至关重要,但其过度使用正演变成一个全球性问题,尤其是学生中的网络成瘾现象日益严重。早期研究主要探讨了网络成瘾的风险因素,得出了各种不同的结果。本研究旨在通过将心理韧性理论与认知行为理论相结合,深入探究影响大学生网络成瘾的关键因素。它全面分析了自我控制、情绪调节、社会支持、感知压力和心理韧性如何影响网络成瘾,并探讨了它们之间的相互作用和潜在机制。该研究方便地选取了999名大学生进行调查,以测量他们在六个构念上的自我报告评分:自我控制、情绪调节、感知压力、心理韧性、社会支持和网络成瘾。采用结构方程模型 - 人工神经网络(SEM - ANN)方法,该研究揭示了预测因素与网络成瘾之间复杂的非线性关系。结果表明,自我控制和心理韧性显著降低网络成瘾,而感知压力则显著增加风险。值得注意的是,情绪调节和社会支持并没有直接降低网络成瘾的风险。进一步分析表明,心理韧性在自我控制、情绪调节、社会支持和网络成瘾之间起中介作用。此外,对标准化重要性的多层感知器分析表明,自我控制是最关键的预测因素(100%),其次是情绪调节(9.1%)、社会支持(8.4%)和心理韧性(5.4%)。该研究为大学生网络成瘾问题提供了理论和实践见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验