Xu Mao, Zhang Qianyu, Wei Shupeng, Liu Shoujie, Zhou Min, Zhao Yanying, Li Benxia, Xie Yi
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Angew Chem Int Ed Engl. 2025 Jun 2;64(23):e202506072. doi: 10.1002/anie.202506072. Epub 2025 Apr 4.
Photocatalytic CH synthesis from CO and HO by utilizing solar energy represents a promising sustainable process, yet its efficiency remains significantly limited. Herein, we proposed a dual-engineered strategy integrating 3D ordered macroporous (3DOM) architectures with heteronuclear dual-metal active sites to synergistically promote the photocatalytic CH production. As an example, the Cu/3DOM-InO photocatalyst was synthesized by in situ incorporating Cu single atoms (Cu SAs) into 3DOM InO through a template-assisted pyrolysis process. The strong interaction between Cu SAs and InO resulted in the formation of charge-polarized Cu─In active sites along with abundant oxygen vacancies (Os). 3DOM architectures serving as special nanoreactors displayed significant advantages in promoting CO enrichment and confining key intermediates, thereby increasing *CO coverage. Meanwhile, the charge-polarized Cu─In active sites effectively mitigated electrostatic repulsion and promoted the formation of *CO + *CHO intermediates, resulting in a thermodynamically spontaneous C─C coupling step. Therefore, the Cu/3DOM-InO photocatalyst exhibited robust CO reduction to CH, achieving high CH evolution rates under various CO concentrations, including pure CO, 10% CO in Ar (simulated flue gas), and 0.04% CO in Ar (simulated air). This work offers a novel strategy for the construction of photocatalysts with tailored microstructures and specific active sites to promote the conversion of CO and HO into multicarbon products.
利用太阳能由一氧化碳和水进行光催化合成甲烷是一个很有前景的可持续过程,但其效率仍受到显著限制。在此,我们提出了一种双工程策略,将三维有序大孔(3DOM)结构与异核双金属活性位点相结合,以协同促进光催化甲烷生成。例如,通过模板辅助热解过程将铜单原子(Cu SAs)原位掺入3DOM氧化铟(In₂O₃)中,合成了Cu/3DOM-In₂O光催化剂。Cu SAs与In₂O之间的强相互作用导致形成电荷极化的Cu─In活性位点以及大量氧空位(Ov)。作为特殊纳米反应器的3DOM结构在促进一氧化碳富集和限制关键中间体方面显示出显著优势,从而增加了CO的覆盖度。同时,电荷极化的Cu─In活性位点有效减轻了静电排斥并促进了CO + *CHO中间体的形成,导致热力学上自发的C─C偶联步骤。因此,Cu/3DOM-In₂O光催化剂表现出强大的将一氧化碳还原为甲烷的能力,在各种一氧化碳浓度下都能实现高甲烷析出速率,包括纯一氧化碳、氩气中10%的一氧化碳(模拟烟道气)以及氩气中0.04%的一氧化碳(模拟空气)。这项工作为构建具有定制微观结构和特定活性位点的光催化剂提供了一种新策略,以促进一氧化碳和水转化为多碳产物。