Zafar Abdul, Schumann Benjamin
The Francis Crick Institute and Imperial College London, 1 Midland Road, London, NW1 1AT.
Chimia (Aarau). 2025 Mar 26;79(3):146-151. doi: 10.2533/chimia.2025.146.
Glycosylation is a profound influencer of glycoprotein function. Glycans have a critical impact on health and disease, yet the tools to study them have trailed behind proteins and nucleic acids. O-GalNAc glycosylation involves the addition of N-acetylgalactosamine (GalNAc) to protein substrates. Dysregulation of O-GalNAc glycosylation is implicated in many pathologies such as cancer. Studying O-GalNAc glycosylation is complicated by the lack of a consensus sequence for initiation and the complex interdependence between a large family of 20 GalNAc transferases (GalNAc-Ts) in human cells. These issues necessitate precise methods of interrogating enzyme function. Herein, we discuss our own advances into the generation of precision tools to study O-GalNAc glycosylation and other glycosylation types. We discuss the use of bump-and-hole engineering to illuminate the roles of individual GalNAc-Ts. Engineering biosynthetic pathways enables cell line-specific uptake of chemical, editable sugars in co-culture settings. We provide an insight into the state-of-the-art in this field.
糖基化是糖蛋白功能的一个重要影响因素。聚糖对健康和疾病有着至关重要的影响,然而研究它们的工具却落后于蛋白质和核酸。O-连接N-乙酰半乳糖胺糖基化涉及将N-乙酰半乳糖胺(GalNAc)添加到蛋白质底物上。O-连接N-乙酰半乳糖胺糖基化的失调与许多病理学相关,如癌症。由于缺乏起始的共有序列以及人类细胞中20种GalNAc转移酶(GalNAc-Ts)大家族之间复杂的相互依赖关系,研究O-连接N-乙酰半乳糖胺糖基化变得复杂。这些问题需要精确的方法来探究酶的功能。在此,我们讨论我们自己在生成用于研究O-连接N-乙酰半乳糖胺糖基化和其他糖基化类型的精确工具方面取得的进展。我们讨论了使用“凸起-孔洞”工程来阐明单个GalNAc-Ts的作用。工程化生物合成途径能够在共培养环境中实现细胞系特异性摄取化学可编辑糖。我们对该领域的最新进展进行了深入探讨。