Suppr超能文献

使用1037例台湾患者队列对SORG机器学习算法进行国际外部验证,该算法用于预测颈椎前路椎间盘切除融合术后持续使用阿片类药物的处方情况。

International external validation of the SORG machine learning algorithm for predicting sustained postoperative opioid prescription after anterior cervical discectomy and fusion using a Taiwanese cohort of 1,037 patients.

作者信息

Chen Yu-Yung, Yen Hung-Kuan, Hsu Jui-Yo, Lin Ta-Chun, Lin Hao-Chen, Chen Chih-Wei, Hu Ming-Hsiao, Groot Olivier Q, Schwab Joseph H

机构信息

Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei City, Taiwan; Department of Medical Education, National Taiwan University Hospital, Taipei City, Taiwan.

Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei City, Taiwan; Department of Orthopaedic Surgery, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu City, Taiwan.

出版信息

Spine J. 2025 Mar 28. doi: 10.1016/j.spinee.2025.03.022.

Abstract

BACKGROUND CONTEXT

Anterior cervical discectomy and fusion (ACDF) is widely performed for cervical spine disorders, with opioids commonly prescribed postoperatively for pain management. However, prolonged opioid use carries significant risks such as dependency and adverse health effects. Predictive models like the SORG machine learning algorithm (SORG-MLA) have been developed to forecast prolonged opioid use post-ACDF. External validation is essential to ensure their effectiveness across different healthcare settings and populations.

PURPOSE

The study aimed to assess the generalizability of the SORG-MLA to a Taiwanese patient cohort for predicting prolonged opioid use after ACDF.

STUDY DESIGN

Retrospective cohort study utilizing data from a tertiary care center in Taiwan.

PATIENT SAMPLE

1,037 patients who underwent ACDF between 2010 and 2018 were included.

OUTCOME MEASURES

The primary outcome was sustained postoperative opioid prescription defined as continuous opioid use for at least 90 days following ACDF.

METHODS

The performance of the SORG-MLA in the validation cohort was assessed using discrimination measures (area under the receiver operating characteristic curve [AUROC] and the area under the precision-recall curve [AUPRC]), calibration, overall performance (Brier Score), and decision curve analysis. Comparing the validation cohort to the developmental revealed significant differences in demographic profiles, medicolegal frameworks, ethnic cultural contexts and key predictors of postoperative opioid use identified by the SORG-MLA. The Taiwanese cohort was characterized by an older age demographic, a lower proportion of female participants, higher smoking prevalence, higher incidence of preoperative myelopathy and radiculopathy, and more frequent use of antidepressants prior to surgery. Conversely, these patients were less likely to have extended preoperative opioid prescriptions beyond 180 days, undergo multilevel ACDF procedures, or be treated with concurrent medications such as Beta-2 agonists, Gabapentin, and ACE inhibitors. This study had no funding source or conflict of interests.

RESULTS

The model demonstrated good discriminative ability, with an AUROC of 0.78 and an AUPRC of 0.35. Calibration curves indicated that the model overestimated the risk of prolonged opioid use. This discrepancy may be attributed to the significantly higher incidence of sustained opioid consumption in the American development cohort, spanning from 2000 to 2018, which was threefold higher than that in the Taiwanese validation cohort between 2010 and 2018 (9.9% [270/2737] vs. 3.3% [34/1037]; p < .01). The Brier score was 0.033, which improved upon the null model's score of 0.040, indicating robust overall performance. Decision curve analysis confirmed the model's clinical utility, demonstrating net benefits across various decision thresholds.

CONCLUSIONS

The SORG-MLA has demonstrated robust discriminative abilities and overall performance when applied to a unique Taiwanese cohort. However, the model exhibited an overestimation of the risk of prolonged opioid use, suggesting the need for recalibration with more contemporary data to reflect current opioid prescription practices, ethnic and cultural differences, and opioid regulations. Following recalibration, integration and prospective validation within the electronic healthcare system should be pursued. This will enable clinicians to proactively identify patients at heightened risk of prolonged opioid use following ACDF.

摘要

背景

颈椎前路椎间盘切除融合术(ACDF)广泛应用于治疗颈椎疾病,术后通常会开具阿片类药物用于疼痛管理。然而,长期使用阿片类药物存在显著风险,如成瘾和对健康的不良影响。像SORG机器学习算法(SORG-MLA)这样的预测模型已被开发出来,用于预测ACDF术后长期使用阿片类药物的情况。外部验证对于确保其在不同医疗环境和人群中的有效性至关重要。

目的

本研究旨在评估SORG-MLA在台湾患者队列中预测ACDF术后长期使用阿片类药物的可推广性。

研究设计

利用台湾一家三级医疗中心的数据进行回顾性队列研究。

患者样本

纳入2010年至2018年间接受ACDF手术的1037例患者。

观察指标

主要观察指标为术后持续使用阿片类药物处方,定义为ACDF术后连续使用阿片类药物至少90天。

方法

使用判别指标(受试者操作特征曲线下面积[AUROC]和精确召回率曲线下面积[AUPRC])、校准、整体性能(Brier评分)和决策曲线分析来评估SORG-MLA在验证队列中的表现。将验证队列与开发队列进行比较,发现人口统计学特征、法医学框架、种族文化背景以及SORG-MLA确定的术后使用阿片类药物的关键预测因素存在显著差异。台湾队列的特点是年龄较大、女性参与者比例较低、吸烟率较高、术前脊髓病和神经根病的发病率较高,以及术前更频繁使用抗抑郁药。相反,这些患者术前开具超过180天阿片类药物处方、接受多节段ACDF手术或接受β-2激动剂、加巴喷丁和ACE抑制剂等联合药物治疗的可能性较小。本研究没有资金来源或利益冲突。

结果

该模型显示出良好的判别能力,AUROC为0.78,AUPRC为0.35。校准曲线表明该模型高估了长期使用阿片类药物的风险。这种差异可能归因于2000年至2018年美国开发队列中持续使用阿片类药物的发生率显著更高,是2010年至2018年台湾验证队列的三倍(9.9%[270/2737]对3.3%[34/1037];p<.01)。Brier评分为0.033,优于零模型的0.040分,表明整体性能良好。决策曲线分析证实了该模型的临床实用性,显示在各种决策阈值下都有净收益。

结论

SORG-MLA应用于独特的台湾队列时显示出强大的判别能力和整体性能。然而,该模型高估了长期使用阿片类药物风险,表明需要用更现代的数据进行重新校准,以反映当前的阿片类药物处方实践、种族和文化差异以及阿片类药物法规。重新校准后,应在电子医疗系统中进行整合和前瞻性验证。这将使临床医生能够主动识别ACDF术后长期使用阿片类药物风险较高的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验