Suppr超能文献

基于2-[F]FDG PET/CT代谢参数和临床变量的多参数诊断模型,在修订后的儿童肿瘤学组分类系统下,能够区分高危和非高危儿童神经母细胞瘤。

A multiparameter diagnostic model based on 2-[F]FDG PET/CT metabolic parameters and clinical variables can differentiate high-risk and non-high-risk pediatric neuroblastoma under the revised Children's Oncology Group classification system.

作者信息

Xu Yanfeng, Si Yukun, Liu Jun, Li Siqi, Wang Wei, Wang Guanyun, Yang Jigang

机构信息

Nuclear Medicine Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

UItrasonic Diagnosis Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

出版信息

Quant Imaging Med Surg. 2025 Mar 3;15(3):2094-2105. doi: 10.21037/qims-24-1111. Epub 2025 Feb 18.

Abstract

BACKGROUND

It is crucial to assist neuroblastoma (NB) pediatric patients in accurate risk stratification based on the revised Children's Oncology Group (COG) classification system through non-invasive examinations. This study assessed the diagnostic efficacy of integrating multiparametric 2-[F]fluoro-D-glucose positron emission tomography/computed tomography (2-[18F]FDG PET/CT) metabolic parameters with clinical variables to differentiate between high- and non-high-risk pediatric NB according to the revised COG classification system.

METHODS

A retrospective study was conducted involving a total of 89 pediatric NB patients, including 71 high-risk and 18 non-high-risk patients, who underwent pre-treatment 2-[F]FDG PET/CT imaging. All patients were confirmed by pathology, and clinical variables were collected. The metabolic parameters of 2-[F]FDG PET/CT were evaluated, including maximum standard uptake value (SUVmax), mean standard uptake value (SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG). The differences in diagnostic efficacy were evaluated by comparing the differences between receiver operating characteristic (ROC) curves. The DeLong test, integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were utilized to assess the enhancement in diagnostic performance. The clinical utility of the diagnostic model was evaluated through decision curve analysis (DCA).

RESULTS

The ROC curve analysis of TLG showed the highest differentiating diagnostic value [sensitivity =0.620, 95% confidence interval (CI): 0.496-0.730; specificity =0.833, 95% CI: 0.577-0.956; area under the curve (AUC) 0.764, 95% CI: 0.648-0.881; cut-off =234.70] among metabolic parameters of 2-[F]FDG PET/CT. After multivariate forward stepwise logistic regression (LR) analysis, the combined diagnostics model of age, gender, the International Neuroblastoma Risk Group Staging System (INRGSS) stage (L1/L2 . M/MS) and TLG resulted in the highest AUC of 0.932 (95% CI: 0.867-0.998; sensitivity =0.901, 95% CI: 0.802-0.956; specificity =0.889, 95% CI: 0.604-0.978). Compared to TLG, the diagnostic efficiency of the model demonstrated a significant improvement [Z=3.089, P<0.001; IDI =0.388, P<0.001; NRI (categorical) =0.736, P<0.001]. The DCA further validated the clinical efficacy of the model.

CONCLUSIONS

The multiparameter diagnosis model based on 2-[F]FDG PET/CT metabolic parameters and clinical parameters had excellent value in the differential diagnosis of high- and non-high-risk pediatric NB under the revised COG classification system.

摘要

背景

通过非侵入性检查,依据修订后的儿童肿瘤学组(COG)分类系统,协助神经母细胞瘤(NB)儿科患者进行准确的风险分层至关重要。本研究评估了将多参数2-[F]氟代-D-葡萄糖正电子发射断层扫描/计算机断层扫描(2-[18F]FDG PET/CT)代谢参数与临床变量相结合,以根据修订后的COG分类系统区分高危和非高危儿科NB的诊断效能。

方法

进行了一项回顾性研究,共纳入89例儿科NB患者,其中71例高危患者和18例非高危患者,均接受了治疗前的2-[F]FDG PET/CT成像。所有患者均经病理确诊,并收集了临床变量。评估了2-[F]FDG PET/CT的代谢参数,包括最大标准摄取值(SUVmax)、平均标准摄取值(SUVmean)、代谢肿瘤体积(MTV)和总病变糖酵解(TLG)。通过比较受试者操作特征(ROC)曲线之间的差异评估诊断效能的差异。采用DeLong检验、综合判别改善(IDI)和净重新分类改善(NRI)来评估诊断性能的增强。通过决策曲线分析(DCA)评估诊断模型的临床实用性。

结果

TLG的ROC曲线分析显示,在2-[F]FDG PET/CT的代谢参数中,其具有最高的鉴别诊断价值[敏感性=0.620,95%置信区间(CI):0.496-0.730;特异性=0.833,95%CI:0.577-0.956;曲线下面积(AUC)0.764,95%CI:0.648-0.881;截断值=234.70]。经过多变量向前逐步逻辑回归(LR)分析,年龄、性别、国际神经母细胞瘤风险组分期系统(INRGSS)分期(L1/L2.M/MS)和TLG的联合诊断模型的AUC最高,为0.932(95%CI:0.867-0.998;敏感性=0.901,95%CI:0.802-0.956;特异性=0.889,95%CI:0.604-0.978)。与TLG相比,该模型的诊断效率有显著提高[Z=3.089,P<0.001;IDI =0.388,P<0.001;NRI(分类)=0.736,P<0.001]。DCA进一步验证了该模型的临床疗效。

结论

基于2-[F]FDG PET/CT代谢参数和临床参数的多参数诊断模型,在修订后的COG分类系统下,对高危和非高危儿科NB的鉴别诊断具有优异价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d58/11948436/0c7d61f6a53b/qims-15-03-2094-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验