Suppr超能文献

通过空间谱源空间脑电图分解揭示的脑电图与功能磁共振成像信号模式之间的空间(不)匹配。

Spatial (mis)match between EEG and fMRI signal patterns revealed by spatio-spectral source-space EEG decomposition.

作者信息

Jiricek Stanislav, Koudelka Vlastimil, Mantini Dante, Marecek Radek, Hlinka Jaroslav

机构信息

Clinical Research Program, National Institute of Mental Health, Klecany, Czech Republic.

Department of Complex Systems, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic.

出版信息

Front Neurosci. 2025 Mar 14;19:1549172. doi: 10.3389/fnins.2025.1549172. eCollection 2025.

Abstract

This study aimed to directly compare electroencephalography (EEG) whole-brain patterns of neural dynamics with concurrently measured fMRI BOLD data. To achieve this, we aim to derive EEG patterns based on a spatio-spectral decomposition of band-limited EEG power in the source-reconstructed space. In a large dataset of 72 subjects undergoing resting-state hdEEG-fMRI, we demonstrated that the proposed approach is reliable in terms of both the extracted patterns as well as their spatial BOLD signatures. The five most robust EEG spatio-spectral patterns not only include the well-known occipital alpha power dynamics, ensuring consistency with established findings, but also reveal additional patterns, uncovering new insights into brain activity. We report and interpret the most reproducible source-space EEG-fMRI patterns, along with the corresponding EEG electrode-space patterns, which are better known from the literature. The EEG spatio-spectral patterns show weak, yet statistically significant spatial similarity to their functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signatures, particularly in the patterns that exhibit stronger temporal synchronization with BOLD. However, we did not observe a statistically significant relationship between the EEG spatio-spectral patterns and the classical fMRI BOLD resting-state networks (as identified through independent component analysis), tested as the similarity between their temporal synchronization and spatial overlap. This provides evidence that both EEG (frequency-specific) power and the BOLD signal capture reproducible spatio-temporal patterns of neural dynamics. Instead of being mutually redundant, these only partially overlap, providing largely complementary information regarding the underlying low-frequency dynamics.

摘要

本研究旨在直接比较脑电图(EEG)全脑神经元动力学模式与同时测量的功能磁共振成像(fMRI)血氧水平依赖(BOLD)数据。为实现这一目标,我们旨在基于源重建空间中带限EEG功率的时空谱分解来推导EEG模式。在一个包含72名接受静息态高密度脑电图-功能磁共振成像(hdEEG-fMRI)的受试者的大型数据集中,我们证明了所提出的方法在提取的模式及其空间BOLD特征方面都是可靠的。五个最稳健的EEG时空谱模式不仅包括众所周知的枕叶α功率动力学,确保与既定发现一致,还揭示了其他模式,为大脑活动提供了新的见解。我们报告并解释了最可重复的源空间EEG-fMRI模式以及相应的EEG电极空间模式,这些模式在文献中更为人所知。EEG时空谱模式与其功能磁共振成像(fMRI)血氧水平依赖(BOLD)特征显示出微弱但具有统计学意义的空间相似性,特别是在与BOLD表现出更强时间同步的模式中。然而,我们没有观察到EEG时空谱模式与经典fMRI BOLD静息态网络(通过独立成分分析确定)之间存在统计学上的显著关系,通过它们的时间同步和空间重叠之间的相似性进行测试。这提供了证据,表明EEG(频率特异性)功率和BOLD信号都捕获了可重复的神经动力学时空模式。这些模式并非相互冗余,而是仅部分重叠,在很大程度上提供了关于潜在低频动力学的互补信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ec9/11949981/d88b9f881b3f/fnins-19-1549172-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验