Carney Brianna N, Illiano Placido, Pohl Taylor M, Desu Haritha L, Mudalegundi Shwetha, Asencor Andoni I, Jwala Shika, Ascona Maureen C, Singh Praveen K, Titus David J, Pazarlar Burcu A, Wang Lei, Bianchi Laura, Mikkelsen Jens D, Atkins Coleen M, Lambertsen Kate L, Brambilla Roberta
bioRxiv. 2025 Mar 13:2025.03.13.643110. doi: 10.1101/2025.03.13.643110.
Astrocytes participate in synaptic transmission and plasticity through tightly regulated, bidirectional communication with pre- and post-synaptic neurons, as well as microglia and oligodendrocytes. A key component of astrocyte-mediated synaptic regulation is the cytokine tumor necrosis factor (TNF). TNF signals via two cognate receptors, TNFR1 and TNFR2, both expressed in astrocytes. While TNFR1 signaling in astrocytes has been long demonstrated to be necessary for physiological synaptic function, the role of astroglial TNFR2 has never been explored. Here, we demonstrate that astroglial TNFR2 is essential for maintaining hippocampal synaptic function and plasticity in physiological conditions. Indeed, mice with selective ablation of TNFR2 in astrocytes exhibited dysregulated expression of neuronal and glial proteins (e.g., SNARE complex molecules, glutamate receptor subunits, glutamate transporters) essential for hippocampal synaptic transmission and plasticity. Hippocampal astrocytes sorted from mice displayed downregulation of genes and pathways implicated in synaptic plasticity, as well as astrocyte-neuron and astrocyte-oligodendrocyte communication. These alterations were accompanied by increased glial reactivity and impaired astrocyte calcium dynamics, and ultimately translated into functional deficits, specifically impaired long-term potentiation (LTP) and cognitive functions. Notably, male mice exhibited more pronounced hippocampal synaptic and cellular alterations, suggesting sex-dependent differences in astroglial TNFR2 regulation of synaptic function. Together, these findings indicate that TNFR2 signaling in astrocytes is essential for proper astrocyte-neuron communication at the basis of synaptic function, and that this is regulated in a sex-dependent manner.
星形胶质细胞通过与突触前和突触后神经元以及小胶质细胞和少突胶质细胞进行严格调控的双向通信,参与突触传递和可塑性。星形胶质细胞介导的突触调节的一个关键成分是细胞因子肿瘤坏死因子(TNF)。TNF通过两种同源受体TNFR1和TNFR2发出信号,这两种受体都在星形胶质细胞中表达。虽然长期以来已经证明星形胶质细胞中的TNFR1信号对于生理突触功能是必要的,但星形胶质细胞TNFR2的作用从未被探索过。在这里,我们证明星形胶质细胞TNFR2对于在生理条件下维持海马突触功能和可塑性至关重要。事实上,在星形胶质细胞中选择性敲除TNFR2的小鼠表现出对海马突触传递和可塑性至关重要的神经元和胶质蛋白(如SNARE复合体分子、谷氨酸受体亚基、谷氨酸转运体)的表达失调。从小鼠中分离出的海马星形胶质细胞显示出与突触可塑性以及星形胶质细胞 - 神经元和星形胶质细胞 - 少突胶质细胞通信相关的基因和通路的下调。这些改变伴随着胶质细胞反应性增加和星形胶质细胞钙动力学受损,并最终转化为功能缺陷,特别是长期增强(LTP)受损和认知功能受损。值得注意的是,雄性小鼠表现出更明显的海马突触和细胞改变,表明星形胶质细胞TNFR2对突触功能的调节存在性别依赖性差异。总之,这些发现表明星形胶质细胞中的TNFR2信号对于突触功能基础上的适当星形胶质细胞 - 神经元通信至关重要,并且这是以性别依赖性方式调节的。