Zakiyyah Salma Nur, Satriana Nadya Putri, Fransisca Natasha, Gaffar Shabarni, Syakir Norman, Hartati Yeni Wahyuni
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia.
Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Bandung 40173, Indonesia.
ADMET DMPK. 2025 Feb 17;13(1):2577. doi: 10.5599/admet.2577. eCollection 2025.
This study aimed to explore the modification of screen-printed carbon electrode (SPCE) to produce an extensive conductive surface with gold nanoparticles (AuNPs) for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ribonucleic acid (RNA).
The experiment was carried out using drop casting (DC) and spray coating (SC) methods. Au-S covalent interactions were formed between thiolated single-stranded DNA (ssDNA) and Au surface, which further hybridized with the target RNA to be detected using differential pulse voltammetry (DPV). Optimization of experimental conditions was performed using Box-Behnken design (BBD) on probe ssDNA concentration, probe ssDNA immobilization time, and target hybridization time. The morphology of the modified electrode was characterized using a scanning electron microscope, while the electrochemical behaviour was determined with DPV and electron impedance spectroscopy.
The results showed that SPCE modification with AuNPs by DC produced a higher peak current height of 12.267 μA with an value of 2.534 kΩ, while SC improved the distribution of AuNPs in the electrode surface. The optimum experimental conditions obtained using BBD were 0.5 μg mL ssDNA-probe concentration, an immobilization time of 22 minutes, and a hybridization time of 12 minutes. The limit of SARS-CoV-2 RNA detection at a concentration range of 0.5 to 10 μg mL was 0.1664 and 0.694 μg mL for DC and SC, respectively. The T-test results for both methods show that the current response of target RNA with SPCE/AuNP by DC does not show the same result, indicating a significant difference in the current response between those two methods.
SPCE/AuNP by DC is better than SPCE/AuNP by SC for immobilizing inosine-substituted ssDNA, which subsequently hybridizes with viral RNA, enabling label-free detection of guanine from SARS-CoV-2 RNA.
本研究旨在探索对丝网印刷碳电极(SPCE)进行改性,以利用金纳米颗粒(AuNPs)制备具有广泛导电表面的电极,用于检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)核糖核酸(RNA)。
实验采用滴铸(DC)和喷涂(SC)方法进行。硫醇化单链DNA(ssDNA)与金表面之间形成Au-S共价相互作用,然后使用差分脉冲伏安法(DPV)与待检测的靶RNA进一步杂交。使用Box-Behnken设计(BBD)对探针ssDNA浓度、探针ssDNA固定时间和靶杂交时间进行实验条件优化。使用扫描电子显微镜对修饰电极的形态进行表征,同时用DPV和电子阻抗谱测定电化学行为。
结果表明,通过DC用AuNPs修饰SPCE产生的峰值电流高度更高,为12.267 μA, 值为2.534 kΩ,而SC改善了AuNPs在电极表面的分布。使用BBD获得的最佳实验条件为0.5 μg/mL ssDNA探针浓度、22分钟的固定时间和12分钟的杂交时间。在0.5至10 μg/mL浓度范围内,DC和SC检测SARS-CoV-2 RNA的下限分别为0.1664和0.694 μg/mL。两种方法的T检验结果表明,DC修饰的SPCE/AuNP对靶RNA的电流响应与SC不同,表明这两种方法在电流响应上存在显著差异。
对于固定肌苷取代的ssDNA,进而与病毒RNA杂交以实现对SARS-CoV-2 RNA中鸟嘌呤的无标记检测,DC修饰的SPCE/AuNP优于SC修饰的SPCE/AuNP。