Suppr超能文献

论神经网络的不确定性原理。

On the uncertainty principle of neural networks.

作者信息

Zhang Jun-Jie, Zhang Dong-Xiao, Chen Jian-Nan, Pang Long-Gang, Meng Deyu

机构信息

Northwest Institute of Nuclear Technology, Xi'an, Shaanxi 710024, China.

Key Laboratory of Quark & Lepton Physics of Ministry of Education, Central China Normal University, Wuhan, Hubei 430079, China.

出版信息

iScience. 2025 Mar 10;28(4):112197. doi: 10.1016/j.isci.2025.112197. eCollection 2025 Apr 18.

Abstract

In this study, we explore the inherent trade-off between accuracy and robustness in neural networks, drawing an analogy to the uncertainty principle in quantum mechanics. We propose that neural networks are subject to an uncertainty relation, which manifests as a fundamental limitation in their ability to simultaneously achieve high accuracy and robustness against adversarial attacks. Through mathematical proofs and empirical evidence, we demonstrate that this trade-off is a natural consequence of the sharp boundaries formed between different class concepts during training. Our findings reveal that the complementarity principle, a cornerstone of quantum physics, applies to neural networks, imposing fundamental limits on their capabilities in simultaneous learning of conjugate features. Meanwhile, our work suggests that achieving human-level intelligence through a single-network architecture or massive datasets alone may be inherently limited. Our work provides new insights into the theoretical foundations of neural network vulnerability and opens up avenues for designing more robust neural network architectures.

摘要

在本研究中,我们探讨了神经网络中准确性和鲁棒性之间固有的权衡关系,将其类比为量子力学中的不确定性原理。我们提出神经网络受制于一种不确定性关系,这种关系表现为它们在同时实现高精度和抵御对抗性攻击的鲁棒性方面能力的根本限制。通过数学证明和经验证据,我们表明这种权衡是训练过程中不同类别概念之间形成的尖锐边界的自然结果。我们的研究结果表明,量子物理学的基石互补原理适用于神经网络,对其同时学习共轭特征的能力施加了基本限制。同时,我们的工作表明,仅通过单一网络架构或海量数据集来实现人类水平的智能可能存在内在局限性。我们的工作为神经网络脆弱性的理论基础提供了新的见解,并为设计更鲁棒的神经网络架构开辟了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a93/11953989/a6f30dd36153/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验