Nasr Mahmoud, Brzostowski Krzysztof, Piórkowski Adam, Abd El-Samie Fathi E
Department of Biocybernetics and Biomedical Engineering, AGH University of Krakow, 30-059, Krakow, Poland.
Sano Centre for Computational Medicine, Kraków, Poland.
Sci Rep. 2025 Mar 31;15(1):10997. doi: 10.1038/s41598-025-89491-2.
Biometric authentication is essential for securing Internet of Things (IoT) devices, yet the vulnerability of biometric data to breaches underscores the necessity for improved security measures. Cancelable biometric sysems, which convert original biometric data into non-reversible templates, offer a strong solution for user privacy preservation. This paper presents an innovative method for creating cancelable biometric templates by integrating Empirical Mode Decomposition (EMD) and quaternion mathematics. The EMD disaggregates biometric data into Intrinsic Mode Functions (IMFs), whereas quaternion transformations guarantee the safety and non-reproducibility characteristics of the templates. The proposed method ensures template diversity and IoT systems' efficiency. Experimental assessments indicate the method robustness against possible attacks, attaining an Area under the Receiver Operating Characteristic curve (AROC) of 0.9997 and an almost negligible Equal Error Rate (EER). Moreover, the system has a minimal computational cost, rendering it appropriate for resource-limited IoT settings. These findings highlight the method capacity to tackle significant security issues, while ensuring optimal performance in practical applications.
生物特征认证对于保障物联网(IoT)设备的安全至关重要,然而生物特征数据易受泄露影响,这凸显了改进安全措施的必要性。可撤销生物特征系统将原始生物特征数据转换为不可逆模板,为保护用户隐私提供了强有力的解决方案。本文提出了一种创新方法,通过整合经验模态分解(EMD)和四元数数学来创建可撤销生物特征模板。EMD将生物特征数据分解为固有模态函数(IMF),而四元数变换则保证了模板的安全性和不可复制性。所提方法确保了模板的多样性和物联网系统的效率。实验评估表明该方法对可能的攻击具有鲁棒性,接收者操作特征曲线下面积(AROC)达到0.9997,误识率几乎可忽略不计。此外,该系统的计算成本极低,适用于资源受限的物联网环境。这些发现突出了该方法解决重大安全问题的能力,同时确保在实际应用中具有最佳性能。