Xing Dong, Gao Xufeng, Chen Huan, Zhang Jianze, Edwards Madison E, Liang Chiyu, Zhu Chongqin, Meng Yifan, Zare Richard N, Xia Yu, Zhang Xinxing
College of Chemistry, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.
Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States.
Anal Chem. 2025 Apr 15;97(14):7995-8000. doi: 10.1021/acs.analchem.5c00386. Epub 2025 Apr 1.
Water is sprayed into the air using three distinct methods: (1) nanoelectrospray ionization, (2) a vibrating membrane nebulizer, and (3) a pneumatic nebulizer. The resulting droplets are analyzed by three different mass analyzers: (a) a linear ion trap mass analyzer on an mass spectrometer, (b) the dual-pressure linear ion trap mass analyzer on an mass spectrometer, and (c) the Orbitrap mass analyzer on the same system. We searched for hydroxyl radical adducts with hydronium ions (OH•-HO) or reaction products with caffeine dissolved in water and with melatonin dissolved in water. These experiments were repeated in several different laboratories, and all results were the same. The oxidation products of caffeine and melatonin were not detected when using the Orbitrap mass analyzer having a much longer holding time in the ion trap (500 ms) but could be observed with reduced intensity at much shorter holding times (<10 ms). The signal of OH•-HO was also significantly reduced when using the dual-pressure linear ion trap mass analyzer. These results suggest that ion signals from fragile radicals may be diminished or lost depending on the mass detection system and operating conditions employed, and there may be a risk of obtaining spurious results when using an Orbitrap mass spectrometer.
(1) 纳米电喷雾电离,(2) 振动膜雾化器,以及(3) 气动雾化器。产生的液滴由三种不同的质量分析器进行分析:(a) 一台质谱仪上的线性离子阱质量分析器,(b) 同一台质谱仪上的双压线性离子阱质量分析器,以及(c) 同一系统上的轨道阱质量分析器。我们搜索了与水合氢离子形成的羟基自由基加合物(OH•-HO) 或者与溶解在水中的咖啡因以及溶解在水中的褪黑素的反应产物。这些实验在几个不同的实验室中重复进行,所有结果都是相同的。当使用在离子阱中具有长得多的保持时间(500毫秒) 的轨道阱质量分析器时,未检测到咖啡因和褪黑素的氧化产物,但在短得多的保持时间(<10毫秒) 时可以观察到强度降低的氧化产物。当使用双压线性离子阱质量分析器时,OH•-HO的信号也显著降低。这些结果表明,来自脆弱自由基的离子信号可能会根据所采用的质量检测系统和操作条件而减弱或丢失,并且在使用轨道阱质谱仪时可能存在获得虚假结果的风险。