文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于术前鉴别肝内胆管癌与伴胆管炎的肝内胆管结石的联合影像组学和临床模型:一种机器学习方法

A combined radiomics and clinical model for preoperative differentiation of intrahepatic cholangiocarcinoma and intrahepatic bile duct stones with cholangitis: a machine learning approach.

作者信息

Qian Hongwei, Huang Yanhua, Dong Yuxing, Xu Luohang, Chen Ruanchang, Zhou Fangzheng, Zhou Difan, Yu Jianhua, Lu Baochun

机构信息

Department of Hepatobiliary and Pancreatic Surgery, Shaoxing People's Hospital, Shaoxing, China.

Shaoxing Key Laboratory of Minimally Invasive Abdominal Surgery and Precise Treatment of Tumor, Shaoxing, China.

出版信息

Front Oncol. 2025 Mar 17;15:1546940. doi: 10.3389/fonc.2025.1546940. eCollection 2025.


DOI:10.3389/fonc.2025.1546940
PMID:40165897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11955465/
Abstract

BACKGROUND: This study aimed to develop and validate a predictive model integrating radiomics features and clinical variables to differentiate intrahepatic bile duct stones with cholangitis (IBDS-IL) from intrahepatic cholangiocarcinoma (ICC) preoperatively, as accurate distinction is crucial for determining appropriate treatment strategies. METHODS: A total of 169 patients (97 IBDS-IL and 72 ICC) who underwent surgical resection were retrospectively analyzed. Radiomics features were extracted from ultrasound images, and clinical variables with significant differences between groups were identified. Feature selection was performed using LASSO regression and recursive feature elimination (RFE). The radiomics model, clinical model, and combined model were constructed and evaluated using the area under the curve (AUC), calibration curves, decision curve analysis (DCA), and SHAP analysis. RESULTS: The radiomics model achieved an AUC of 0.962, and the clinical model achieved an AUC of 0.861. The combined model, integrating the Radiomics Score with clinical variables, demonstrated the highest predictive performance with an AUC of 0.988, significantly outperforming the clinical model ( < 0.05). Calibration curves showed excellent agreement between predicted and observed outcomes, and the Hosmer-Lemeshow test confirmed a good model fit ( = 0.998). DCA revealed that the combined model provided the greatest clinical benefit across a wide range of threshold probabilities. SHAP analysis identified the Radiomics Score as the most significant contributor, complemented by abdominal pain and liver atrophy. CONCLUSION: The combined model integrating radiomics features and clinical data offers a powerful and reliable tool for preoperative differentiation of IBDS-IL and ICC. Its superior performance and clinical interpretability highlight its potential for improving diagnostic accuracy and guiding clinical decision-making. Further validation in larger, multicenter datasets is warranted to confirm its generalizability.

摘要

背景:本研究旨在开发并验证一种整合放射组学特征和临床变量的预测模型,以在术前鉴别肝内胆管结石伴胆管炎(IBDS-IL)与肝内胆管癌(ICC),因为准确区分对于确定合适的治疗策略至关重要。 方法:回顾性分析了169例行手术切除的患者(97例IBDS-IL和72例ICC)。从超声图像中提取放射组学特征,并确定组间有显著差异的临床变量。使用LASSO回归和递归特征消除(RFE)进行特征选择。使用曲线下面积(AUC)、校准曲线、决策曲线分析(DCA)和SHAP分析构建并评估放射组学模型、临床模型和联合模型。 结果:放射组学模型的AUC为0.962,临床模型的AUC为0.861。将放射组学评分与临床变量相结合的联合模型表现出最高的预测性能,AUC为0.988,显著优于临床模型(<0.05)。校准曲线显示预测结果与观察结果之间具有良好的一致性,Hosmer-Lemeshow检验证实模型拟合良好(=0.998)。DCA显示联合模型在广泛的阈值概率范围内提供了最大的临床益处。SHAP分析确定放射组学评分为最主要的贡献因素,腹痛和肝萎缩也有辅助作用。 结论:整合放射组学特征和临床数据的联合模型为术前鉴别IBDS-IL和ICC提供了一种强大而可靠的工具。其卓越的性能和临床可解释性凸显了其在提高诊断准确性和指导临床决策方面的潜力。有必要在更大的多中心数据集中进行进一步验证以确认其通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/a6206f509090/fonc-15-1546940-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/ec1845194290/fonc-15-1546940-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/b22f4b5dd851/fonc-15-1546940-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/71b67bcea426/fonc-15-1546940-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/40e48f9df964/fonc-15-1546940-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/7135d639642b/fonc-15-1546940-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/d0666e1b6614/fonc-15-1546940-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/607758517de5/fonc-15-1546940-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/a6206f509090/fonc-15-1546940-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/ec1845194290/fonc-15-1546940-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/b22f4b5dd851/fonc-15-1546940-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/71b67bcea426/fonc-15-1546940-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/40e48f9df964/fonc-15-1546940-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/7135d639642b/fonc-15-1546940-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/d0666e1b6614/fonc-15-1546940-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/607758517de5/fonc-15-1546940-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86bc/11955465/a6206f509090/fonc-15-1546940-g008.jpg

相似文献

[1]
A combined radiomics and clinical model for preoperative differentiation of intrahepatic cholangiocarcinoma and intrahepatic bile duct stones with cholangitis: a machine learning approach.

Front Oncol. 2025-3-17

[2]
Preoperative prediction of lymph node metastasis in intrahepatic cholangiocarcinoma: an integrative approach combining ultrasound-based radiomics and inflammation-related markers.

BMC Med Imaging. 2025-1-2

[3]
Deep learning radiomics nomogram for preoperatively identifying moderate-to-severe chronic cholangitis in children with pancreaticobiliary maljunction: a multicenter study.

BMC Med Imaging. 2025-2-5

[4]
A radiomic-based model of different contrast-enhanced CT phase for differentiate intrahepatic cholangiocarcinoma from inflammatory mass with hepatolithiasis.

Abdom Radiol (NY). 2021-8

[5]
The diagnostic value of a nomogram based on enhanced CT radiomics for differentiating between intrahepatic cholangiocarcinoma and early hepatic abscess.

Front Mol Biosci. 2024-8-23

[6]
Differentiation combined hepatocellular and cholangiocarcinoma from intrahepatic cholangiocarcinoma based on radiomics machine learning.

Ann Transl Med. 2020-2

[7]
A Multi-Parametric Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Status in Intrahepatic Cholangiocarcinoma.

Front Oncol. 2022-2-24

[8]
DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma.

Eur Radiol. 2022-7

[9]
An MRI-based fusion model for preoperative prediction of perineural invasion status in patients with intrahepatic cholangiocarcinoma.

World J Surg Oncol. 2025-4-26

[10]
Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study.

Int J Surg. 2024-2-1

本文引用的文献

[1]
Radiomics-Based Support Vector Machine Distinguishes Molecular Events Driving the Progression of Lung Adenocarcinoma.

J Thorac Oncol. 2025-1

[2]
The preoperative scoring system combining neutrophil/lymphocyte ratio and CA19-9 predicts the long-term prognosis of intrahepatic cholangiocarcinoma patients undergoing curative liver resection.

BMC Cancer. 2024-9-5

[3]
Hepatolithiasis: Epidemiology, presentation, classification and management of a complex disease.

World J Gastroenterol. 2024-4-7

[4]
A radiomics model based on transrectal ultrasound for predicting prostate cancer.

Med Ultrason. 2024-6-21

[5]
Serum tumor markers expression (CA199, CA242, and CEA) and its clinical implications in type 2 diabetes mellitus.

World J Diabetes. 2024-2-15

[6]
Removal of intrahepatic bile duct stone could reduce the risk of cholangiocarcinoma: A single-center retrospective study in South Korea.

World J Clin Cases. 2024-2-16

[7]
Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging.

Radiol Med. 2024-3

[8]
Noninvasive prediction of perineural invasion in intrahepatic cholangiocarcinoma by clinicoradiological features and computed tomography radiomics based on interpretable machine learning: a multicenter cohort study.

Int J Surg. 2024-2-1

[9]
British Society of Gastroenterology guidelines for the diagnosis and management of cholangiocarcinoma.

Gut. 2023-12-7

[10]
Evidence-based clinical practice guidelines for cholelithiasis 2021.

J Gastroenterol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索