Chopra Sidhant, Worhunsky Patrick D, Naganawa Mika, Zhang Xi-Han, Segal Ashlea, Orchard Edwina, Cropley Vanessa, Wood Stephen, Angarita Gustavo A, Cosgrove Kelly, Matuskey David, Nabulsi Nabeel B, Huang Yiyun, Carson Richard E, Esterlis Irina, Skosnik Patrick D, D'Souza Deepak C, Holmes Avram J, Radhakrishnan Rajiv
Department of Psychology, Yale University, New Haven, CT, USA.
Orygen, Parkville, Melbourne, VIC, Australia.
medRxiv. 2025 Mar 23:2025.03.22.25324465. doi: 10.1101/2025.03.22.25324465.
Converging neuroimaging, genetic, and post-mortem evidence show a fundamental role of synaptic deficits in schizophrenia pathogenesis. However, the underlying molecular and cellular mechanisms that drive the onset and progression of synaptic pathology remain to be established. Here, we used synaptic density positron emission tomography (PET) imaging using the [C]UCB-J radiotracer to reveal a prominent widespread pattern ( < 0.05) of lower synaptic density in individuals with schizophrenia (n=29), compared to a large sample of healthy controls (n=93). We found that the spatial pattern of lower synaptic density in schizophrenia is spatially aligned ( = 0.67; < 0.001) with higher normative distributions of GABA, 5HT, 5HT, and 5HT, and lower levels of CB and 5HT. Competing neighborhood deformation network models revealed that regional synaptic pathology strongly correlated with estimates predicted using a model constrained by both interregional structural connectivity and molecular similarity (.42 < < .61; < 0.05). These data suggest that synaptic pathology in schizophrenia is jointly constrained by both global axonal connectivity and local molecular vulnerability. Simulation-based network diffusion models were used to identify regions that may represent the initial sources of pathology, nominating left prefrontal areas ( < 0.05) as potential foci from which synaptic pathology initiates and propagates to molecularly similar areas. Overall, our findings provide evidence for widespread deficit in synaptic density in schizophrenia that is jointly constrained by axonal connectivity and molecular similarity between regions, and that synaptic deficits spread from initial source regions to axonally connected and molecularly similar territories.
越来越多的神经影像学、遗传学和尸检证据表明,突触缺陷在精神分裂症发病机制中起基本作用。然而,驱动突触病理学发生和发展的潜在分子和细胞机制仍有待确定。在这里,我们使用[C]UCB-J放射性示踪剂进行突触密度正电子发射断层扫描(PET)成像,以揭示与大量健康对照者(n = 93)相比,精神分裂症患者(n = 29)突触密度较低的显著广泛模式(P < 0.05)。我们发现,精神分裂症中突触密度较低的空间模式在空间上与GABA、5HT、5HT和5HT的较高标准分布以及CB和5HT的较低水平对齐(r = 0.67;P < 0.001)。竞争邻域变形网络模型显示,区域突触病理学与使用受区域间结构连通性和分子相似性约束的模型预测的估计值密切相关(0.42 < r < 0.61;P < 0.05)。这些数据表明,精神分裂症中的突触病理学受到全局轴突连通性和局部分子易损性的共同约束。基于模拟的网络扩散模型用于识别可能代表病理学初始来源的区域,将左前额叶区域(P < 0.05)指定为突触病理学开始并传播到分子相似区域的潜在病灶。总体而言,我们的研究结果为精神分裂症中突触密度广泛降低提供了证据,这种降低受到轴突连通性和区域间分子相似性的共同约束,并且突触缺陷从初始来源区域扩散到轴突连接和分子相似的区域。