Chai Yaqiong, Zhang Hedong, Robles Carlos, Kim Andrew Shinho, Janhanshad Nada, Thompson Paul M, van der Werf Ysbrand, van Heese Eva M, Kim Jiyoung, Joo Eun Yeon, Aksman Leon, Kang Kyung-Wook, Shin Jung-Won, Trang Abigail, Ha Jongmok, Lee Emily, Moon Yeonsil, Kim Hosung
Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Scripps College, Claremont, CA, USA.
medRxiv. 2025 Mar 20:2025.03.19.25324269. doi: 10.1101/2025.03.19.25324269.
Perivascular spaces (PVS) are cerebrospinal fluid-filled tunnels around brain blood vessels, crucial for the functions of the glymphatic system. Changes in PVS have been linked to vascular diseases and aging, necessitating accurate segmentation for further study. PVS segmentation poses challenges due to their small size, varying MRI appearances, and the scarcity of annotated data. We present a finely segmented PVS dataset from T2-weighted MRI scans, sourced from the Human Connectome Project Aging (HCP-Aging), encompassing 200 subjects aged 30 to 100. Our approach utilizes a combination of unsupervised and deep learning techniques with manual corrections to ensure high accuracy. This dataset aims to facilitate research on PVS dynamics across different ages and to explore their link to cognitive decline. It also supports the development of advanced image segmentation algorithms, contributing to improved medical imaging automation and the early detection of neurodegenerative diseases.
血管周围间隙(PVS)是脑血 管周围充满脑脊液的通道,对类淋巴系统的功能至关重要。PVS的变化与血管疾病和衰老有关,因此需要进行准确分割以进一步研究。由于PVS尺寸小、MRI表现各异且标注数据稀缺,PVS分割面临挑战。我们从人类连接组计划衰老(HCP-Aging)的T2加权MRI扫描中提供了一个精细分割的PVS数据集,涵盖200名年龄在30至100岁之间的受试者。我们的方法结合了无监督和深度学习技术,并进行人工校正以确保高精度。该数据集旨在促进对不同年龄段PVS动态的研究,并探索它们与认知衰退的联系。它还支持先进图像分割算法的开发,有助于改进医学成像自动化和神经退行性疾病的早期检测。