Suppr超能文献

脑 MRI 中的血管周围间隙扩大:四个区域的自动量化。

Enlarged perivascular spaces in brain MRI: Automated quantification in four regions.

机构信息

Biomedical Imaging Group Rotterdam, Department of Radiology, Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, the Netherlands.

Department of Radiology, Department of Nuclear Medicine, Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, the Netherlands.

出版信息

Neuroimage. 2019 Jan 15;185:534-544. doi: 10.1016/j.neuroimage.2018.10.026. Epub 2018 Oct 13.

Abstract

Enlarged perivascular spaces (PVS) are structural brain changes visible in MRI, are common in aging, and are considered a reflection of cerebral small vessel disease. As such, assessing the burden of PVS has promise as a brain imaging marker. Visual and manual scoring of PVS is a tedious and observer-dependent task. Automated methods would advance research into the etiology of PVS, could aid to assess what a "normal" burden is in aging, and could evaluate the potential of PVS as a biomarker of cerebral small vessel disease. In this work, we propose and evaluate an automated method to quantify PVS in the midbrain, hippocampi, basal ganglia and centrum semiovale. We also compare associations between (earlier established) determinants of PVS and visual PVS scores versus the automated PVS scores, to verify whether automated PVS scores could replace visual scoring of PVS in epidemiological and clinical studies. Our approach is a deep learning algorithm based on convolutional neural network regression, and is contingent on successful brain structure segmentation. In our work we used FreeSurfer segmentations. We trained and validated our method on T2-contrast MR images acquired from 2115 subjects participating in a population-based study. These scans were visually scored by an expert rater, who counted the number of PVS in each brain region. Agreement between visual and automated scores was found to be excellent for all four regions, with intraclass correlation coefficients (ICCs) between 0.75 and 0.88. These values were higher than the inter-observer agreement of visual scoring (ICCs between 0.62 and 0.80). Scan-rescan reproducibility was high (ICCs between 0.82 and 0.93). The association between 20 determinants of PVS, including aging, and the automated scores were similar to those between the same 20 determinants of PVS and visual scores. We conclude that this method may replace visual scoring and facilitate large epidemiological and clinical studies of PVS.

摘要

扩大的血管周围空间(PVS)是磁共振成像中可见的结构性脑改变,在衰老中很常见,被认为是脑小血管疾病的反映。因此,评估 PVS 的负担有望成为一种脑影像学标志物。PVS 的视觉和手动评分是一项繁琐且依赖观察者的任务。自动化方法将推进 PVS 病因的研究,可以帮助评估衰老中“正常”负担是多少,并且可以评估 PVS 作为脑小血管疾病生物标志物的潜力。在这项工作中,我们提出并评估了一种自动量化中脑、海马体、基底节和半卵圆中心 PVS 的方法。我们还比较了(先前确定的)PVS 决定因素与视觉 PVS 评分与自动 PVS 评分之间的关联,以验证自动 PVS 评分是否可以替代流行病学和临床研究中的视觉 PVS 评分。我们的方法是一种基于卷积神经网络回归的深度学习算法,取决于成功的脑结构分割。在我们的工作中,我们使用了 FreeSurfer 分割。我们在 2115 名参与基于人群的研究的受试者的 T2 对比 MR 图像上训练和验证了我们的方法。这些扫描由一位专家评分员进行视觉评分,他计算了每个脑区的 PVS 数量。发现视觉和自动评分之间的一致性非常好,所有四个区域的内类相关系数(ICC)在 0.75 到 0.88 之间。这些值高于视觉评分的观察者间一致性(ICC 在 0.62 到 0.80 之间)。扫描-再扫描的重现性很高(ICC 在 0.82 到 0.93 之间)。20 个 PVS 决定因素,包括衰老,与自动评分之间的关联与相同的 20 个 PVS 和视觉评分之间的关联相似。我们得出结论,该方法可以替代视觉评分,并促进 PVS 的大型流行病学和临床研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验